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ABSTRACT

The application of fuzzy logic for the optimal operation from both, economic and reliability perspective, of a
Wind Energy Conversion System (WECS) interconnected to an autonomous electric power system is demonstrated.
The daily scheduling of such systems is complicated due to forecasting uncertainties. In this paper, wind
produced power, system demand, reserve requirements and operational cost are considered as fuzzy quantities and
a fuzzy dynamic programming algorithm is developed to compose the optimal unit commitment schedule. The
application of the method is demonstrated by means of a case study for the power system of Crete island.

1. INTRODUCTION

In conventional scheduling of an autonomous electric power system interconnected with a Wind Energy Conver-
sion System (WECS), the wind produced power, the system demand and the unit availability are assumed to be
known, since the forecasted values of the wind speed and the load demand are considered as crisp. The
optimization problem is the determination of start-up, shut-down, and generation level of all units over a
specified time period T, while the objective function to be minimized is the total cost, subject to system demand,
reserve requirements and individual unit constraints (Bakirtzis 1988).

Load demand and particularly wind speed are highly stochastic variables so that their forecasted values suffer
by a significant error. Stochastic models as well as a neural-network-based prediction model are developed, for
both, wind power and load demand forecasting, in order to improve the forecasting accuracy (Balouktsis 1986,
JOULE 1I 1995). However, when scheduling is performed on the basis of forecasted wind power and load
demand values, the decision made may no longer be optimal since the effects of uncertainties propagate through
the time horizon, significantly affecting the economics and reliability. The methodology proposed here takes these
uncertainties into account using a fuzzy logic approach. The operational cost and the spinning reserve of the
system are also considered as fuzzy quantities, as related to fuzzy hourly load and wind speed values. The fuzzy
optimization procedure reaches an optimal unit commitment scenario where the constraints are satisfied to
varying degrees according to decision maker priorities. This is opposed to conventional optimization where an
optimal scenario is sought satisfying all the constraints crisply.

A case study based on the proposed methodology, for the power system of the island of Crete interconnected
with WECS is presented. To evaluate the performance of the proposed fuzzy algorithm, conventional methods
are also simulated and the results are compared.

2. THE FUZZY OPTIMIZATION PROBLEM

Fuzzy set theory is employed to model all the above described imprecisions. Thus, the proposed fuzzy dynamic
. programming algorithm uses fuzzy variables such as the total cost C, the load demand forecasting error AL,
the wind speed forecasting error AV_and the spinning reserve S. The task is the maximization of the degree
to which all these constraints are satisfied. The optimal operation schedule is the one with the higher member-
ship value in the fuzzy decision set D, which in fuzzy set notation is written as :
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The optimal schedule is determined for a time interval of T hours. A priority classification is mapped, separately
for the conventional units and the WECS units, in order to reduce the computational effort needed. The priority
list for the conventional units is formed either ordering them in increasing full-load operational cost or encoding
the experience of the operators as in the case of WECS units (Burns 1975). According to this priority list, a
unit is set out of operation only if all the above units in the list (higher cost) are out of operation.

For every hour H, the maximum WECS output power is calculated. The mathematical model for the WECS
output power P(v) as a function of the wind speed v, is given by the relation :

0 v<V;

in
v 3
P(v) = P [Vr] Vip <v<V;
2
Pr V,<v <V, ¢))
0 Vco <V

where:
P, is the WECS rated power, V, is the cut-in wind speed, V, is the rated wind speed and V_ is the cut-off
wind speed. The hourly actual wind speed and load demand are also fuzzy as the sum of the corresponding
forecasted value and the corresponding forecast error, and are described by the following equation :

=L

forecasted

+ AV, L

sctual

V-cml = Vfomamd + ALd ®

The values for the actual wind speed V_ , and load demand L, for discrete membership values of the fuzzy
sets AV, and AL, are computed respectively. Then, the WECS output power is calculated. The optimal com-
bination of wind generation (W/G) units to be connected to the grid, is constrained by the penetration limit of
30% of the total conventional generators power for each state (Kalaitzakis 1987, Papadopoulos 1988). The
combinations of the wind generators selected from the W/G priority list are merged to the combinations of the
conventional units selected from the conventional unit priority list, thus formulating the states of the system. The
feasible states of the system for each hour are thosc which supply the required load demand and do not violate
any of the constraints.

For every hour H and for each feasible state the expected total operational cost C and the membership values
of the fuzzy sets C, S and D, are also calculated. The limitation of the number of paths M for the transition
from each state of hour H-1 to the states of the next hour H, reduces the computational effort (Wood 1984).
The M more interesting paths from each hour to the next are those with the higher membership value of the
related states in the fuzzy decision set D. This is performed for each hour of the time interval T and the
optimum time schedule is derived by backward tracing.

The proposed repetitive fuzzy dynamic programming algorithm is described by the following relation :

o (H,7) = max  min( pe(HI), Ravo (HI), pas(HY), s(H), o(H-13)))
{N} @)

where, for every state J during the hour H, g (HJ), u.(H)J), n,, HD, 1y (H)), py(HJD) are the membership
values in the relevant fuzzy sets and N is the set of the feasible states during the hour H.

The fuzzy set C describes the possible range of the operational cost while the value p_ indicates the membership
grade of the operational cost in the set. The function p_is a numerical expression of the decision maker
satisfaction for the cost level. When p_= 1, there is full satisfaction. The proposed membership function for the
cost is described by equation (5) :
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where

w = 0.64048 is a weight coefficient estimated by successive trials. The choice of the weight coefficient affects
the resultant optimal commitment schedule and expresses the decision maker penalty for the increase of the cost.
COST(H,J) is the total operational cost for the path up to the hour H and COST__(H,J) is the minimal total
cost for the hour H.

The membership function of the fuzzy set AV_ denotes the range of variation of the forecasted wind speed. The
error on the wind speed forecasting becomes less acceptable as it increases. The mean absolute errors for the
forecasted wind speed are calculated separately for the positive and negative values M*_ and M, with the
repetitive use of the wind speed forecasting algorithm. The resulting mean absolute errors are described by means
of linguistic variables according to the classification shown in Table 1. The variables M’ and M- take one of
the values M’ (VL), M (VL), M’ (L), M (L), M', (M), M' (M), M’ (S), M (S), M’ (VS), M (VS), where the
labels VL, L, M, S and VS denote Very Large, Large, Medium, Small and Very Small. The membership
function for the error on the wind speed forecasting is described by equation (6).

;
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The membership function for the error on the load demand forecasting AL, is derived by a similar approach to
AV_ and is given by the equation :
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The total required spinning reserve is taken as the 10% of the sum of the forecasted load demand and WECS
output power (Papadopoulos 1988). As the total reserve decreases it becomes less acceptable. The membership
function for the required spinning reserve is given by the equation :

1 if SR(H) = RQSR(H)
ms(HD) =100 (RSR(*;)(;S*;‘(?S;‘(H)J if SR(H) < RQSR(H) ®)

where :

R = 1.02 is a weight coefficient, SR(H) is the total spinning reserve and RQSR(H) is the total required spinning
reserve.
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Table 3
The Membership Values for the Optimal

Table 1
Linguistic Description of the Mean Absolute

Errors (MAE) of the Load Demand and Commitment Schedule

Wind Speed Forecasts Hour | pate | jlave s pc_ |poM-1)] po
— — — - 1 0,990 | 0,99 | 0,998 | 0,989 1,0 0,989
Linguistic Description Positive Errors  Negative Errors 2 09% | 099 1,0 0988 | 0989 | 0988
VL >0,08 >-0,08 3 0,99 | 0,99 1,0 | 0987 | 0988 | 0987
L 006...008 | -006...-0,08 4 0,99 | 0,99 1,0 | 098 | 0987 | 098
M 004...006 | -004...-006 5 0,99 | 0,99 1,0 | 098 | 098 | 0986
S 002..004 | -002...-004 6 0,9% | 0,99 1,0 | 0985 | 098 | 0,985
VS 000...002 000... -002 7 0,99 | 0,99 1,0 | o984 | 0985 | 0984
8 0,990 | 0,99 1,0 0,985 | 0984 | 0,984
9 1,000 | 0990 | 0998 | 0985 | 0,984 | 0,984
10 0990 | 099 | 0998 | 0985 | 0984 | 0984
1 0985 | 099 | 0998 | 0,983 | 0984 | 0,983
Table 2 12 0,900 | 0,930 | 0,99 | 0,898 | 0,983 | 0,898
Gene rating Unit Data 13 0920 | 0910 | 09% | 0910 | 0898 | 0,898
Unit type|Nunber|  Station Unit Nane Max power] 14 0920 | 0920 | 099 | 0921 | 0,898 | 0,898
of units MW) 15 0940 | 0930 | 099 | 0944 | 0898 | 0,898
Steam 1 Linoperanmta Nol 62 16 0,950 | 0,960 1,0 0,942 | 0,898 | 0,898
Seam [ 2 | Llinoperamata |  No2,No3 15 17 0,950 | 0,960 1,0 0931 | 0898 | 0,898
Steam | 3 | Linoperamata | No4, No5, No6 25 18 0,950 | 0,960 1,0 0,940 | 0,898 | 0,898
Diesel | 4 | Linoperarmta | Nol,No2, No3, No4| 123 19 0,940 | 0,960 1,0 0,952 | 0,898 | 0,898
Gas 2 | Linoperarmta Nol, No2 162 20 0,940 | 0930 1,0 0,940 | 0898 | 0,898
Cas 1 Chania Nol 1735 21 0920 | 0930 | 0997 | 0924 | 0898 | 0,898
Cas 1 Chania No4 %6 2 0920 [ 0950 | 0997 | 0931 | 03898 | 0,898
Gas 1 Chania No$5 40,08 23 0,930 | 0940 | 0,998 | 0923 | 0,898 | 0,898
Gas 2 Chania No6, No7 22 24 0,940 | 0910 | 0998 | 0934 | 0,898 | 0,898

3. SIMULATION PROCEDURE

The simulation procedure consists of the following steps :
(a) The short-term forecasting of wind speed and load demand.
(b) The determination of the optimal time schedule in the fuzzy environment.

In this paper stochastic models and a neural-network-based prediction model are used for step (a) and the results
are compared.

The stochastic forecasting model for the hourly load demand uses data for the load demand for every hour and
day of a 10 years period and simulates the complex periodic fluctuation for the hourly mean load demand during
a whole year period and a whole day period, according to the seasonal behaviour. The stochastic wind speed
forecasting model of (Balouktsis 1986) is used, featuring an appropriate transformation for the cancellation of
the annual and daily periodic fluctuations of the initial data. ,

In order to improve the forecasting accuracy, a neural-network-based prediction model is developed, for both,
wind speed and load demand forecasting (JOULE II 1995, ELSAM 1993). The dynamic process to model is the
future wind speed and load demand profile. An one output recurrent higher-order neural network (RHONN) is
used iteratively to give forecasts for all time steps, while high-order terms up to two are taken into account and
the neurons are fully interconnected via recurrent links. The model has been optimised by considering the
forecast errors of all time steps and achieves an improvement of about 10% over the stochastic model for long
time forecasting. Nevertheless, this improvement is not very beneficial to the proposed commitment method
which filters properly the forecasting imprecisions. ,

The results of the forecasting routine for the simulating period are compared to the previous years measured
values and their mean absolute errors are calculated and described by the use of linguistic variables.

In step (b) the optimum unit commitment algorithm is employed as described in Section 2. In the present work
the states corresponding to membership values 1, 0.999, 0.998,... and 0.5 in the fuzzy sets AV_and AL, are
examined for every hour. '
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4, A CASE STUDY

The proposed fuzzy dynamic algorithm is applied to the electric power system of the island of Crete. The
conventional power station consists of 6 steam turbines, 4 diesel units and 7 gas turbines. The WECS system
consists of 30 wind generators of 1MW rated power each. The characteristics of the conventional units are
- illustrated in Table 2.

The fuzzy dynamic algorithm results are compared to a conventional algorithm results (Bakirtzis 1988). The
conventional model computes the optimal unit commitment by minimisation of the objective cost function,
neglecting the uncertainties on the load demand and the wind speed forecasting (i,,.= 1, Wy~ D.

The forecasted load demand for the selected time interval of 24 hours is 3220.4 MWh while the wind energy
contribution is 434.8 MWh. The resulting production cost following the conventional commitment schedule, is
$425993.

Table 3 contains the values of the membership functions W, By Ho B py(H-1) and p,(H), for every hour
of the proposed fuzzy optimal unit commitment schedule. The total production cost and the membership value
p, of the proposed optimal unit commitment are $405119 and 0.898 respectively.

The total production cost depends on the shape of the membership functions p,,., Wy e Mo By The membership
functions weight factors express the operators penalty for the increase in the total cost, as well as the penalty
for the use of load demand and wind speed levels far away from the forecasted 'actual' ones. The total production
cost can be further reduced using different weight factors at the price of a lower membership value of .
However, a decision with a too low membership value u, and relatively low production cost, in practical
applications is unacceptable since it implies that the load levels used are far away from the actual ones.

5. CONCLUSIONS

Results from the present study reveal that the proposed fuzzy dynamic programming is very effective in reaching
an optimal commitment schedule which expresses the operators preferences on conflicting perspectives (produc-
tion cost, reliability). The comparison of the conventional methodology with the proposed one proves the supe-
riority of the former. Indeed, the production cost resulted by the proposed method is lower by 4.9% than the
cost of the conventional one. This is achieved without any degradation of the required reliability of the system.
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