HEqAPMOH ITS ANANER\#IMQN DHINM ENEPTEMS

##  

## 


\%


ME THN YHOETHPIEH TRN: YIOYPIEIO ANAITYEHE Y.nexg.A.E.

YПOYPIEIO ПOMITIFMOY A.E.H.

TEPNA ENEPTEIAKH A.E. EYNAEMMOE EnENAYTRN AlONIKHE ENEPTEIAI KAI A.II.E.

TLゆIN A.E.<br>MANTEZOE ABEE

ミкотós тŋร пароо́бац вpүaбiaç عívaı $\eta$ тароvoiaon evós evalhaktikov́ ovotifuatos BEMS $\tau 0$ o oоio $\mu \pi о \rho \varepsilon i \quad v a$ $\sigma 0 v \delta \varepsilon \theta \varepsilon i ́ ~ \sigma \varepsilon$




## 2．IIEPITPAФH TOY ГYГTHMATOE


 （Intelligent Building Energy Management
 $\mu \varepsilon ́ p \eta:$
－To $\lambda о \gamma เ \sigma \mu ı к о ́ ~ \tau о ט ~ \sigma и \sigma т ท ́ \mu \alpha \tau о \varsigma ~ \pi о v ~$





 $\varepsilon \pi \ll เ v \omega v i \alpha c ~ \kappa \lambda \pi$ ．

To IBEMS $\pi \varepsilon \rho \gamma \gamma \rho \dot{\alpha} \varphi \varepsilon \tau \alpha \iota ~ \lambda \varepsilon \pi \tau о \mu \varepsilon \rho \omega ́ \varsigma ~ \sigma \tau \iota \zeta$ $\varepsilon \pi о ́ \mu \varepsilon v \varepsilon \varsigma \pi \alpha \rho \alpha \gamma ү \alpha ́ \varphi \emptyset о \varsigma$.

## 2．1．Моүгбикко́



 каı ало́ то $\lambda о ү \imath \sigma \mu к о ́ ~ \pi о ט ~ \varepsilon к \tau \varepsilon \lambda \varepsilon i ́ ~ \tau ル \zeta ~$





O $\delta \leqslant \pi \lambda o ́ s ~ a v \tau o ́ s ~ p o ́ \lambda o s ~ \tau o v ~ a \lambda y o ́ \rho ı \theta \mu о v ~$
 $\alpha \sigma \alpha \varphi o u ́ s ~ \lambda о ү к i ́ s . ~ O ~ а \lambda \gamma o ́ p i \theta \mu \circ \varsigma ~ \beta \alpha \sigma i \zeta \varepsilon \tau \alpha l ~ \sigma \varepsilon ~$
 $\gamma 1 \alpha$ v $\alpha$ vлєркєрабтои́v $\tau \alpha \pi \rho о \beta \lambda \eta ́ \mu \alpha \tau \alpha$ лоv








 $\kappa \lambda \alpha \sigma \sigma ı \varepsilon ́ \varsigma ~ \pi \alpha \rho \alpha ́ \mu \varepsilon \tau \rho \circ \imath ~ \varepsilon \lambda \varepsilon ́ \gamma \chi \circ 0 ~ \varepsilon i ́ v \alpha ı ~ \eta$ Өєриокрабía кaı $\eta$ vүpacía．Eívar $\gamma$ vøのтó
 $\alpha \lambda \lambda \omega v \pi \alpha \rho \alpha \mu \varepsilon ́ \tau \rho \omega \nu \dot{\sigma} \pi \omega \varsigma ~ \gamma 1 \alpha ~ \pi \alpha \rho \alpha ́ \delta \varepsilon เ \gamma \mu \alpha ~ \eta$


 Predicted Mean Vote（PMV）$\pi 00$ ع $\xi a p \tau \alpha ́ \tau \alpha$, $\alpha \pi$ о́：
－Tף $\theta \varepsilon \rho \mu о к р \alpha \sigma i ́ \alpha ~ \tau о v ~ \varepsilon \lambda \varepsilon \gamma \chi o ́ \mu \varepsilon v o v ~ \chi \omega ́ \rho о v ~$
－Tұৃ vүрабía
－T $T \downarrow \tau \alpha \chi \nu ́ \tau \eta \tau \alpha \tau \circ \nu \alpha \varepsilon ́ p \alpha$.
 （mean radiant temperature）$k \alpha \imath \dot{\alpha} \lambda \lambda o v \varsigma$





 $\varphi \omega \tau \iota \sigma \mu \dot{v}^{(i l l u m i n a n c e ~ l e v e l) . ~}$
 $\varepsilon \pi i ́ \pi \varepsilon \delta \alpha \mathrm{CO}_{2}$ ท́ TVOCs $\sigma \tau \circ v \varepsilon \lambda \varepsilon \gamma \chi o ́ \mu \varepsilon v o \chi \omega \dot{\chi} \circ$ ．

 ［3，4］．



 $\beta \dot{\lambda} \lambda \tau і \sigma \tau \eta ~ \pi \rho о \sigma \alpha \rho \mu о \gamma \eta ์ ~ \tau о \nu ~ \sigma v \sigma \tau \eta \prime \mu \alpha \tau \sigma \varsigma ~ \sigma \tau \alpha$ $\varepsilon \pi \imath \theta \nu \mu \eta \tau \dot{\alpha} \varepsilon \pi i \pi \varepsilon \delta \alpha \alpha$ ó $\pi \omega \varsigma \pi \varepsilon \rho \imath \gamma \rho \alpha ́ \varphi \varepsilon \tau \alpha \iota \quad \sigma \tau \eta v$ $\pi \alpha \rho \alpha ́ \gamma \rho \alpha \varphi о ~ 2.1 .1$ ．





 ópıa avtá zíval：
$-0.5 \leq$ PMV $\leq 0.5$
$600 \mathrm{ppm} \leq\left[\mathrm{CO}_{2}\right] \leq 800 \mathrm{ppm}$
300 lux $\leq$ Illuminance $\leq 600$ lux．




 $\pi \alpha р \alpha ́ \gamma \rho \alpha \varphi о ~ 2.1 .2 . ~$

## 




 $\mu \varepsilon ́ \sigma \alpha \sigma \tau 0 \chi \omega ́ p o$.
 фштtбцо́．


 Principal Components Analysis（PCA）．




 $\mu \varepsilon \tau \eta \nu$ Principal Components Analysis عivat
 ouváptŋoŋ kóotous paivovtat $\sigma \tau 0$ oxŋju 2．1．2．$\alpha$



BEへTILTEL TIME THE EYNAPTHEHE KOETOY ME XPH工H PCA

$\Sigma_{X} .2 .1 .2 \alpha$

EYNAPTHEH KOZTOYE ПIA 3 MEPE ПPOミOMOI $\Omega$ IH KATA TH $\triangle I A P K E L A ~ T H \Sigma ~$ XEIMEPINHE IIEPIOAOY

$\Sigma_{X} \cdot 2.1 .2 . \beta$


 $\mu \varepsilon \tau \alpha \beta о \lambda \varepsilon ́ s ~ \tau \omega \nu ~ \beta \alpha \rho \propto ́ v ~ \tau \omega v ~ к \alpha v o ́ v \omega v ~ \tau о v ~$


## 2．1．Y นیко́





$\Sigma_{\chi \text { خं } \mu \alpha} 2.2 .1$
－To кеvтрıкó PC $\gamma$ р $\alpha$ оидגоүท́ каı

 бикти์ov．
 тои ктюiou：
$\rightarrow$ Өєриохрабі́а
$\rightarrow$ Yүрабi $\alpha$
$\rightarrow$ T $\alpha \chi \dot{\tau} \tau \eta \tau \alpha \alpha \varepsilon \rho \alpha$


$\rightarrow$ इvүкर́vтр $\omega \sigma \eta \mathrm{CO}_{2}$




 $\pi \alpha \rho \alpha \theta \dot{\rho} \rho \omega v, \kappa \lambda \pi$ ．）．

 ктиі́о．










## Bı $\beta \lambda$ ıоүрарі́а

1. D.Kolokotsa, K.Kalaitzakis, G.Stavrakakis, G.Sutherland, M.Santamouris, S.Soultanidis, P.Moumtzis, J.Brunet, P. Guillaumin, L.Pelegrini, G.Romiti, L.Bakker Advanced decision support techniques in combination with smart card and local operating network technologies for intelligent energy management in buildings, EPIC 98 Conference.
2. D.Kolokotsa, G.Stavrakakis Combining Smart Card and Lon Technologies with advanced decision support techniques to develop an Intelligent Industrial Energy Management Systems for Buildings - Six monthly progress report (BUILTECH project/ CT-97-0044).
3. M.Santamouris, D.Asimakopoulos Passive cooling of buildings, James \& James ISBN 1 873936478.
4. Francis Allard, Natural ventilation of buildings, James \&James ISBN 1873936729.
5. LonWorks Technology - Intelligent Distributed Control Training Course.
6. Detlef Nauck. Neuro-Fuzzy systems Review and prospects. EUFIT '97 pp1044-1053
7. A.Nurnberger, D. Nauck, R.Kruse and L.Merz A neuro-fuzzy Development Tool for Fuzzy Controllers under Matlab/Simulink. EUFIT '97 pp1029-1033
8. T.J. Ross. Fuzzy Logic with Engineering Applications. McGraw-Hill ISBN 0-07-113637-I
9. Levermore JG. Building Energy Management Systems: An application to heating control(1992)
10. Earl Cox. Adaptive fuzzy Systems. IEEE Spectrum February 1993 pp27-31.
