On Causality and the Impulse Response Scandal
Irwin W. Sandberg

Semi-statistical and Projection-Statistical Methods of Integral Equations Numerical Solving
Dmitri G. Arsenjev, Vladimir M. Ivanov, Maxim L. Korenevsky

Bitwise and Dictionary Modeling for Code Compression on Transport Triggered Architectures
Jari Heikkiläinen, Petri Kaukkonen and Jarmo Takala

Arabic Stop Consonants Speech Signal Characterisation In a Joint Time Frequency Plane
Daoud Boutana, Farid Marrir, Mokhtar Nibouche

Fuzzy Controllers CMOS Implementation
Victor Varshavsky, Viacheslav Marakhovsky, Ilia Levin, Nataly Kravchenko

Short-Term Load Forecasting in Power Systems Using Adaptive Fuzzy Critic Based Neural Network
Farzan Rashidi

Concept of Variation Detector Used in Video Signal Compression Domain
Tomáš Frýza, Stanislav Hanus

Multibit Continuous Time \(\Sigma \Delta \) Modulators with a Reduced Number of Comparators
J. De Maeyer, S. Reekmans, P. Rombouts and L. Weyten

Testing of ITU-T G.168 Line-Echo Cancellers using Matlab-GUIDE
Vladimir Malenovsky, Zdenik Smekal

Double-Sampling \(\Sigma \Delta \) ADC's with Bilinear Integrators
P. Rombouts, J. De Maeyer, L. Weyten

Interpretation of the Biomedical Signals Using the RBF-Type Neural Networks
Andrzej Iworski, Piotr Bania

Implementation of the Mobile Terminal in Wireless Mobile Network
Sun-Mi Jun, Nam-Hoon Park

Selective Attention for Faster Scene Analysis
Sang-Bok Choi, Sang-Woo Ban, Minho Lee

Simulating Arbitrary Transfer Function by CDTA-Based Current Divider
Dalibor Biolek, Viera Bioilková

Analysis of Importance of the prosodic Features for Automatic Sentence Modality Recognition in French in real Conditions
Pavel Král, Jana Klečkova, Christophe Cerisara
Study and Implementation of a Fuzzy PD Thermal Comfort Controller for Embedded Fieldbus Systems Applications

E.I. TRIPOLITAKIS¹, D. KOLOKOTSA², K. KALAITZAKIS¹, G. STAVRAKAKIS¹
¹Electronics and Computer Architecture Division, Department of Electronic and Computer Engineering
Technical University of Crete
Technical University of Crete, Kounoupidiana Campus, 73100, Chania, Crete
GREECE
vaggelis@electronics.tuc.gr http://www.elci.tuc.gr

²Department of Natural Resources and Environment
Laboratory of Renewable Energy Resources Engineering
Technological Educational Institute of Crete
3, Romanou Str, 73100, Chania, Crete
GREECE

Abstract: - The aim of this paper is to present the design and evaluation process of a Fuzzy PD controller for an experimental platform for buildings based on a fieldbus system. The experimental platform consists of interconnected nodes (sensors and actuators), using the European Installation Bus (EIB) fieldbus network infrastructure. A “smart node” consisted of a personal computer, containing custom control software, is attached to the above installation and executes the control process program. The controlled parameter is the indoor thermal comfort of the installation zone expressed by the Predicted Mean Vote (PMV) function. The software deployed on the “smart node” makes use of the measurements collected from the sensors and gives the appropriate output values to the actuators using various fuzzy logic algorithms. By application of past studies results, a minimal Fuzzy PD thermal comfort controller is implemented and evaluated. This controller is designed taking into account the easiness of future deployment onto embedded systems with limited memory and processing power capabilities.

Key-Words: - Fuzzy Logic, Embedded Systems, Thermal Comfort, Predicted Mean Vote, Fieldbus Systems

1 Introduction
During the last years, there is a rapid convergence of the technologies of Informatics, Microelectronics and Control Systems leading to novel approaches and solutions of important science problems. The complexity of systems deployed on modern buildings, emerges the need of their optimal control. Successful control of building installations yields to an increase of the comfort [1] and security of the people inside, which has a vital positive impact to their productivity. Moreover, enhanced management of the available resources leads to the reduction of the energy consumption, providing significant aid on the struggle against the greenhouse effect and the decrease of the conventional fuels capacity. Last but not least energy preservation cuts the operational cost of a building.

Fieldbus systems [2] represent an extremely effective way of using modern techniques and technologies to satisfy the above goals. These systems offer the essential infrastructure to create “smart” electromechanical installations. Such installations incorporate microprocessor or microcontroller based systems which execute programs whose algorithms use the environmental values of the building, gathered by deployed sensors, and the accumulated human expertise to provide specific outputs to the actuators. Furthermore, fieldbus systems provide a unified approach to both sensors and actuators which are all treated as equal nodes identified by a unique network address. This approach makes the scaling procedure on such installations simple and rather straightforward. The same applies for the addition or the removal of a network node. Moreover, the total system stability is improved as it doesn’t depend on a specific device whose failure would turn the whole installation not operational. Eventually, fieldbus systems offer great
flexibility on the selection of the transmission means taking into consideration the buildings' requirements. All transmission means demonstrate increased tolerance to electromagnetic noise and interference.

The present paper describes the use of a fieldbus system installation, along with custom control software, in order to fulfill the goals set previously. The next section includes a brief introduction to the EIB system followed by a presentation of the experimental installation where the topology, and the network devices used, is referred. Finally, the experimental results are discussed.

2 Description of the EIB

The European Installation Bus (EIB) [3] is a de facto building networking standard which was proposed by a series of companies, academic institutions and universities which established the independent EIB Association (EIBA) in 1990. At present, EIB is a subset of the KONNEX standard which is the first certified European standard for electrical installation networking by CENELEC. EIB standard, especially in central Europe, is very frequently used in small and middle-sized building installations keeping the largest share of the respective market.

EIB is a decentralized protocol of networking. All compatible nodes embed processing power using a custom microcontroller. The EIB installation is a network of such peer nodes. EIB provides a versatile approach to the selection of the transmission medium making available, in the same installation, every possible combination of twisted pair cable, power line and radio transmission. EIB demonstrates tolerance in noisy environments and at the same time guarantees the delivery of information on time. Data transmission rates can reach 9600 bps yielding a packet delivery interval of 25ms.

Every node has a unique physical address (similar to MAC address on computer network interfaces) and one or more logical or group addresses. Physical addressing is used to distinguish the nodes. On the contrary, logical addresses are tied to every function of the node providing a communication interface between nodes. For example, a two-button rocker has a unique physical and two logical addresses, which are tied to the upper and lower button respectively. The logical addresses of the rocker are shared by the respective functions of a relay switch (e.g. ON and OFF). Logical addresses can be shared by more than two nodes' functions thus implementing complex functions.

The EIB standard [4] utilizes a tree topology. The simplest installation contains a line which can hold up to 64 nodes. A more extended network is an area which consists of 12 lines yielding a total of 768 network nodes. Lines are interconnected using special devices which are called area couplers and handle the routing of the information packets transmitted. In a similar way 15 areas can be connected using area couplers (similar to line couplers) to create a full scale EIB installation containing 11520 nodes. The concept of the area in an EIB installation is illustrated in Fig. 1.

![Fig. 1. Illustration of the Topology of an Area](image)

In order to avoid collisions from the concurrent transmission of information packets from two nodes, EIB uses CSMA/CA a method similar to CSMA/CD used in IEEE 802.3 (Ethernet) in computer networks. According to CSMA/CA, when a collision takes place the participating nodes wait for a random time interval before retransmitting. The window of this time interval increases in an exponential way proportional to the rate of collisions in the bus.

There is a large set of software solutions for design of EIB installations. Moreover, 32-bit libraries for the Windows platform are used to access the bus, thus enabling the production of applications which can utilize its features. Moreover, more than 100 hardware manufacturers provide a great collection of
compatible devices for all the types of control applications.

3 Description of the Installation
The proposed experimental installation consists of a typical EIB installation incorporating sensors and actuators attached or embedded to network nodes and a personal computer which communicates with the installation using a serial (EIA-232) to EIB interface.

Moreover the personal computer executes custom software which embodies the thermal comfort fuzzy logic control algorithm. This software carries out the communication with the bus nodes, visualizes and logs the sensor measurements and the controller output values.

3.1 Hardware Description of the Installation
The experimental platform is installed on the Electric Circuits and Renewable Energy Sources Laboratory of the ECE Department of Technical University of Crete. The bus nodes are placed on a common DIN type rail for electrical installations. The transmission medium used for this network is shielded twisted pair cable. This medium is selected because of its low price, its high immunity to noise and the ability of very long cabling without the need of repeaters.

![Block Diagram of the Installation](image)

All network devices draw power from the bus transmission line where data is transmitted over a DC 24 V voltage. This voltage is provided by a specific EIB power supply which incorporates a choke so as to filter, 50Hz and harmonic frequencies, noise from the 220V power network, out of the transmission line. As previously mentioned, the installation consists of sensors and actuators as illustrated in Fig.2. Most of the sensors used, are attached to analog input interfaces as they were not available as network devices at the time of installation. All sensors are linear and have a 0-10 Volt output. The following sensors are used: MRT (Mean Radiant Temperature), Indoor Temperature, Relative Humidity, Airflow, Carbon Dioxide (CO₂) and Indoor Illuminance. The analog input interfaces used, feature 10-bit ADC resolution which is adequate for this application.

The actuators are EIB compatible binary outputs (Relays) which could handle loads up to 20A. Connected to these outputs are: the heating/cooling modules, two electric shutters, two electric windows and three rows of eight fluorescence lights each.

3.2 Description of “smart node” software
A vital part of the experimental installation is the software executed at the “smart node”. It is coded using Rapid Application Development (RAD) tools taking into account the simplicity of code and the ease of updating and maintaining during its life cycle. Moreover a modular form of design is adopted. The graphical user interface, bus communication, logging and main loop tasks are coded in Visual Basic 6.0 using the eec Falcon EIB API libraries. The main algorithm (e.g. the Fuzzy PD thermal comfort controller) is coded in Visual C++ and compiled as a DLL library which is called from the main application. The modularity of the main algorithm enables the programmer to effortlessly replace the algorithm, experimenting with others since their programming interface remains the same.

The developed software executes, sequentially, several tasks in a main program loop. During its initialization phase, it establishes a connection to the bus. If the connection is successful, it enters the main loop and retrieves the values from the sensors of the installation displaying them on the screen afterwards. The next step is to feed these values to a fuzzy logic controller and retrieve the fuzzy output values. Then, it process, convert and sends them to the respective actuators. Eventually, it displays the output values and logs both the measurements and them to a text file for offline processing.

The period of this system loop is set to 3 minutes except for the heating/cooling subsystem which is being activated in a 30 minutes cycle. The 3 minutes interval is chosen so as to acquire both dense
measurements and prompt response to changes in the lab (e.g. open doors, smokers etc.). The diverse period for the heating/cooling module is selected bearing in mind the stress of its mechanical parts and the amount of time it needs to provide adequate amount of heat or cooling.

3.3 Description of the Fuzzy PD thermal comfort controller

Fuzzy Logic is an elegant and effective approach to control systems in cases where classical methods of control need complex models with high computational cost. Extended use of the human expertise and past experience has been deployed in the present research field where there have been many successful approaches [5,6,7] to control the environmental parameters of a building using such controllers. In this paper the design of a simple yet effective controller is demonstrated. The resulting system is illustrated in Fig. 3.

![Block diagram of the resulting system](image)

Fig. 3 Block diagram of the resulting system

The controlled value is the output of the PMV function [8] according to the ISO 7730 standard. The PMV function is a statistical measure of the thermal comfort between humans. The weights of its function equation are derived from statistical methods of processing. Optimal values of this function vary depending on the season of the year, yielding a set of [-0.5, 0] for winter and [0, 0.5] for summer.

The proposed Fuzzy controller [9,10,11] emulates the behavior of the classic analog PD controller which is proven to be very stable for a variety of diverse systems. It contains two inputs (PMV, dPMV/dt) and one universal output for both heating and cooling (negative output values for cooling, positive values for heating). Each fuzzy input consists of three membership functions which are depicted in Figs. 4 and 5 respectively. The fuzzy output consists of five membership functions too, illustrated in Fig. 6. Nine activation rules are used, presented in tabular form in Table 1. It is clear that this controller is designed bearing in mind the constraints imposed by the candidate target architectures. The selection and the placement of the membership functions used both in inputs and output is made using the accumulated experience from other more complex fuzzy logic controller approaches.

The absolute value of the controller output is used to set the period of operation for the heating / cooling module. Thus, the heater (or cooler) is operated for a time interval which corresponds to the 0 to 100% of a 30 minutes duty cycle. This decision was made due to the lack of an inverting circuit in those modules.

![Membership functions for PMV input](image)

Fig. 4 Membership functions for PMV input

![Membership functions for dPMV/dt input](image)

Fig. 5 Membership functions for dPMV/dt input

4 Experimental Results and Discussion

In order to verify the functionality and evaluate the behavior of the resulting system, a series of tests are performed. The testing phase takes place during summer so the controller outputs are set for cooling operation.

Initially, the region of optimal PMV values is chosen to be [0, 0.75] in order to avoid system
stressing. Later, a more strict set of [0, 0.5] region is employed to study the impact to the cooling module total power dissipation. The optimal PMV value regions were selected by setting the corresponding input membership functions minima and maxima to the desired values.

![Diagram of membership functions for heating/cooling output](image)

Fig. 6 Membership functions for heating/cooling output

<table>
<thead>
<tr>
<th>PMV</th>
<th>Neg</th>
<th>Zeq</th>
<th>Pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>dPMV/dt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neg</td>
<td>Ah ⇔ Pos</td>
<td>Ah ⇔ SP</td>
<td>Ah ⇔ SN</td>
</tr>
<tr>
<td>Zeq</td>
<td>Ah ⇔ Pos</td>
<td>Ah ⇔ Z</td>
<td>Ah ⇔ Neg</td>
</tr>
<tr>
<td>Pos</td>
<td>Ah ⇔ SP</td>
<td>Ah ⇔ SN</td>
<td>Ah ⇔ Neg</td>
</tr>
</tbody>
</table>

Table 1. Activation Rules of the Fuzzy PD Controller

As illustrated in Figs. 7 and 8 the system operated as expected. PMV values are smaller than 0.5 for the largest part of the observations, yielding a mean value of 0.2945 for the [0, 0.75] set and 0.2446 for the [0, 0.5] set. Moreover, the system responds rapidly to external changes in environmental parameters. In precision, the controller responded promptly to sudden temperature rises or drops (the corresponding peaks or dips on both charts) by setting the appropriate output values to the cooling module. The total system response (output to cooling module) compared to PMV and environmental parameters (external, internal temperature and Mean Radiant Temperature) are depicted in Figs. 9 and 10 for the [0, 0.75] and [0, 0.5] cases respectively.

![PMV values for the [0, 0.75] set](image)

Fig 7, PMV values for the [0, 0.75] set

![PMV values for the [0, 0.5] set](image)

Fig 8, PMV values for the [0, 0.5] set

![Environmental measurements versus cooling duty cycle and PMV values for the [0, 0.75] set](image)

Fig 9, Environmental measurements versus cooling duty cycle and PMV values for the [0, 0.75] set
Fig 10, Environmental measurements versus cooling
duty cycle and PMV values for the [0, 0.5] set

The differences between the values of the external
and internal temperature occur because of the
building’s structure which during summer tends to
accumulate heat due to its glass roof. Both
approaches, as shown, respond smoothly to sun rise
and sun set transients (sudden peaks after long dips in
PMV curve and opposite) without oscillatory
behavior or significant overshoot. A more
conservative set of input membership functions i.e.
Wider triangle - [0, 0.75] case, tend to dissipate less
energy on PMV transients while not stressing the
modules’ mechanism.

Table 2, Comparison of statistical measures between
two fuzzy PD implementations

<table>
<thead>
<tr>
<th></th>
<th>Fuzzy PD</th>
<th>Fuzzy PD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[0.0, 0.75]</td>
<td>[0.0, 0.5]</td>
</tr>
<tr>
<td>Mean PMV</td>
<td>0.2945</td>
<td>0.2446</td>
</tr>
<tr>
<td>Cooler Mean Duty</td>
<td>18.86%</td>
<td>21.57%</td>
</tr>
<tr>
<td>Cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Internal</td>
<td>30.70 oC</td>
<td>30.22 oC</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean MRT</td>
<td>27.79 oC</td>
<td>27.42 oC</td>
</tr>
<tr>
<td>Mean External</td>
<td>28.25 oC</td>
<td>26.94 oC</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It is obvious that more conservative membership
functions have negative impact on the mean value of
PMV compared to a more radical approach.
Eventually, the statistical processing results of the
measurements for the two fuzzy PD implementations
are presented in Table 2. It can be noted that the [0, 0.5] scenario presents 17.25% less PMV compared to [0, 0.75] conservative approach, while consuming 14.36% more energy.

References
[1] Fanger P.O, Thermal Analysis and Applications in
Environmental Engineering, McGraw Hill, New
York, 1970
[2] Schumman, Structure and Design of Building
Automation Systems, Proc. Int. Conf. on New
Information Technologies in Science, Education,
Telecommunications and Business, Crimea, Ukraine,
1998
[3] EIBA Training Documentation, EIBA Brussels,
2000
[4] Sauter T., Diedrich D., Kastner W., EIB:
Installation Bus System, Wiley and sons, 2002
[5] Kolokotsa D., Stavarakis G., Kalaitzakis K.,
Tsiavos D. Fuzzy Control for Improved Buildings
Energy Management Systems, Proceedings of
European Symposium on Intelligent Techniques,
Chania Greece 1999
environment that adapts to its inhabitants,
Proceedings of the American Association for
Artificial Intelligence Spring Symposium on
Intelligent Environments, Menlo, Park, CA: AAAI
[7] A. Galata et al., Efficient Design Incorporating
Fundamental Improvements for Control and
Integrated Optimisation”, Proceedings of 2nd
European Conference on Energy Performance and
Indoor Climate in Buildings, Lyon 1998
[8] ISO 7730: Moderate thermal environments -
Determination of the PMV and PPD indices and
specification of the conditions for thermal comfort.
[9] Passino K., Yurkovic S., Fuzzy Control, Addison
Wesley, 1998
[10] Ross, Timothy, Fuzzy Logic with Engineering
of Fuzzy Logic Controllers, Impatiens
Publications, Minneapolis, 1997