Nanoscale RF CMOS Transceiver Design

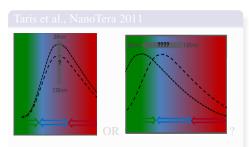
Angelos Antonopoulos

Department of Electronics & Computer Engineering Technical University of Crete

February 23, 2014

- Aggressive CMOS technology scaling down to 28 nm.
- RFICs under low voltage/power operation.
- Suitable region for RFIC design ?
- High overall performance w. min. power consumption.

- Aggressive CMOS technology scaling down to 28 nm.
- RFICs under low voltage/power operation.
- Suitable region for RFIC design?
- High overall performance w. min. power consumption.

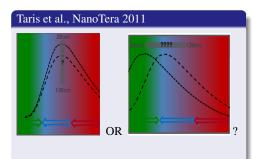

- Aggressive CMOS technology scaling down to 28 nm.
- RFICs under low voltage/power operation.
- Suitable region for RFIC design?
- High overall performance w. min. power consumption.

- Aggressive CMOS technology scaling down to 28 nm.
- RFICs under low voltage/power operation.
- Suitable region for RFIC design?
- High overall performance w. min. power consumption.

Objective

0000

Open Issues


 $FoM = f(Gain, Noise, power, f) \propto (G_m/I_D) \cdot f_T$

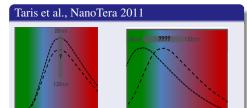
C.-H. Chen, "Thermal noise in modern CMOS technologies," in Solid State Circuits Technologies, InTech, 2010.

- Transistors might work in the moderate or weak inversion region.
- Channel noise models for transistors working in these regions
- Scaling issues of the active noise sources research area for future studies.

Objective

0000

 $FoM = f(Gain, Noise, power, f) \propto (G_m/I_D) \cdot f_T$


- Transistors might work in the
- Channel noise models for
- Scaling issues of the active noise

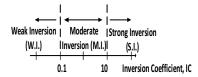
Previous Work - Motivation

Objective

0000

Open Issues

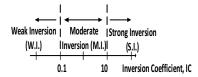
 $FoM = f(Gain, Noise, power, f) \propto (G_m/I_D) \cdot f_T$


OR

C.-H. Chen, "Thermal noise in modern CMOS technologies," in Solid State Circuits Technologies, InTech, 2010.

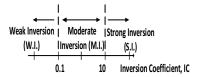
- Transistors might work in the moderate or weak inversion region.
- Channel noise models for transistors working in these regions
- Scaling issues of the active noise sources research area for future studies.

- Figures of Merit representing RFIC behavior.


- Validation through RFIC design

$$IC = I_D/I_{spec}$$

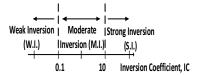
$$I_{spec} = 2nU_T^2 \mu C_{ox} \frac{W}{L}$$


- Figures of Merit representing RFIC behavior.
- Simple and easy to evaluate.
- Validation through RFIC design

$$IC = I_D/I_{spec}$$

$$I_{spec} = 2nU_T^2 \mu C_{ox} \frac{W}{L}$$

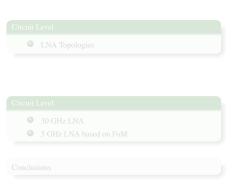
- Figures of Merit representing RFIC behavior.
- Simple and easy to evaluate.
- Thermal noise in terms of RFIC design
- Validation through RFIC design



$$IC = I_D/I_{spec}$$

$$I_{spec} = 2nU_T^2 \mu C_{ox} \frac{W}{L}$$

- Figures of Merit representing RFIC behavior.
- Simple and easy to evaluate.
- Thermal noise in terms of RFIC design
- Validation through RFIC design

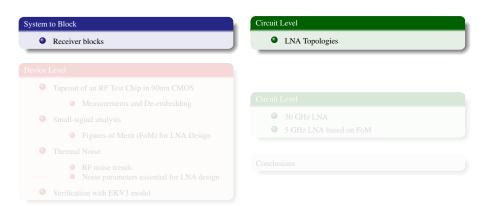

$$IC = I_D/I_{spec}$$

$$I_{spec} = 2nU_T^2 \mu C_{ox} \frac{W}{L}$$

○○○●
This Work

Outline

System to Block Receiver blocks Device Level Tapeout of an RF Test Chip in 90nm CMOS Measurements and De-embedding Small-signal analysis Figures of Merit (FoM) for LNA Design Thermal Noise RF noise trends Noise parameters essential for LNA design Verification with EKV3 model



Outline

○○○● This Work

Outline

Outline

System to Block

Receiver blocks

Device Level

- Tapeout of an RF Test Chip in 90nm CMOS
 - Measurements and De-embedding
- Small-signal analysis
 - Figures of Merit (FoM) for LNA Design
- Thermal Noise
 - RF noise trends
 - Noise parameters essential for LNA design
- Verification with EKV3 model

Circuit Level

LNA Topologies

Circuit Level

- 30 GHz LNA
- 5 GHz LNA based on FoM

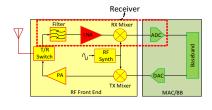
Conclusions

Outline

System to Block Receiver blocks Device Level Tapeout of an RF Test Chip in 90nm CMOS Measurements and De-embedding Small-signal analysis Figures of Merit (FoM) for LNA Design Thermal Noise RF noise trends Noise parameters essential for LNA design Verification with EKV3 model



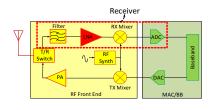
30 GHz LNA


5 GHz LNA based on FoM

Outline

System to Block Receiver blocks Device Level Tapeout of an RF Test Chip in 90nm CMOS Measurements and De-embedding Small-signal analysis Figures of Merit (FoM) for LNA Design Thermal Noise RF noise trends Noise parameters essential for LNA design Verification with EKV3 model

Transceiver and Building Blocks



- - Heterodyne (IF, problem of image)
 - Direct conversion (zero IF)
- Noise of cascaded stages

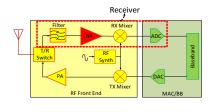
•
$$NF = 1 + (NF_1 - 1) + \frac{NF_2 - 1}{A_{P1}} + \frac{NF_m - 1}{A_{P1} \dots A_{P(m-1)}}$$

$$\bullet \quad \frac{1}{A_{IIP3}^2} = \frac{1}{A_{IIP3,1}^2} + \frac{\alpha_1^2}{A_{IIP3,2}^2} + \frac{\alpha_1^2 \beta_1^2}{A_{IIP3,2}^2 A_{IIP3,3}^2}$$

- LNA should provide
 - Minimum noise figure

Receiver architectures

- Heterodyne (IF, problem of image)
- Direct conversion (zero IF)
- Noise of cascaded stages

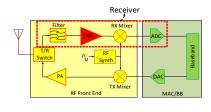

•
$$NF = 1 + (NF_1 - 1) + \frac{NF_2 - 1}{A_{P1}} + \frac{NF_m - 1}{A_{P1} \dots A_{P(m-1)}}$$

$$\frac{1}{A_{IIP3}^2} = \frac{1}{A_{IIP3,1}^2} + \frac{\alpha_1^2}{A_{IIP3,2}^2} + \frac{\alpha_1^2 \beta_1^2}{A_{IIP3,2}^2 A_{IIP3,3}^2}$$

- LNA should provide
 - Minimum noise figure
 - Moderately high gain, depending on

Objective

Transceiver and Building Blocks

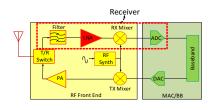


- Receiver architectures
 - Heterodyne (IF, problem of image)
 - Direct conversion (zero IF)
- Noise of cascaded stages

$$\bullet \quad \textit{NF} = 1 + (\textit{NF}_1 - 1) + \frac{\textit{NF}_2 - 1}{\textit{A}_{\textit{P}1}} + \frac{\textit{NF}_m - 1}{\textit{A}_{\textit{P}1} \dots \textit{A}_{\textit{P}(m-1)}}$$

$$\bullet \quad \frac{1}{A_{IIP3}^2} = \frac{1}{A_{IIP3,1}^2} + \frac{\alpha_1^2}{A_{IIP3,2}^2} + \frac{\alpha_1^2 \beta_1^2}{A_{IIP3,2}^2 A_{IIP3,3}^2}$$

- LNA should provide
 - Minimum noise figure
 - Moderately high gain, depending on the application


- Receiver architectures
 - Heterodyne (IF, problem of image)
 - Direct conversion (zero IF)
- Noise of cascaded stages

$$\bullet \quad \textit{NF} = 1 + \left(\textit{NF}_1 - 1\right) + \frac{\textit{NF}_2 - 1}{\textit{A}_{\textit{P}1}} + \frac{\textit{NF}_m - 1}{\textit{A}_{\textit{P}1} \dots \textit{A}_{\textit{P}(m-1)}}$$

$$\bullet \quad \frac{1}{A_{IIP3}^2} = \frac{1}{A_{IIP3,1}^2} + \frac{\alpha_1^2}{A_{IIP3,2}^2} + \frac{\alpha_1^2 \beta_1^2}{A_{IIP3,2}^2 A_{IIP3,3}^2}$$

- LNA should provide
 - Minimum noise figure
 - Moderately high gain, depending on

Objective

- Receiver architectures
 - Heterodyne (IF, problem of image)
 - Direct conversion (zero IF)
- Noise of cascaded stages

$$\bullet \quad \textit{NF} = 1 + \left(\textit{NF}_1 - 1\right) + \frac{\textit{NF}_2 - 1}{\textit{A}_{\textit{P}1}} + \frac{\textit{NF}_m - 1}{\textit{A}_{\textit{P}1} \dots \textit{A}_{\textit{P}(m-1)}}$$

$$\bullet \quad \frac{1}{A_{IIP3}^2} = \frac{1}{A_{IIP3,1}^2} + \frac{\alpha_1^2}{A_{IIP3,2}^2} + \frac{\alpha_1^2 \beta_1^2}{A_{IIP3,2}^2 A_{IIP3,3}^2}$$

- LNA should provide
 - Minimum noise figure
 - Moderately high gain, depending on the application

Matching

- Power matching
- Maximum power transfer to a load

•
$$Z_L = Z_S^*$$

- Input matching
 - Input impedance equal to 50 Ω
 - Return loss: $\Gamma = \frac{Z_{in} R_S}{Z_{in} + R_S}$
 - Idea
- Noise matching
 - $Y_S = Y_{opt}$

- Feedback paths from the output to the input may lead to instability
- Stern stability factor

$$\bullet \ \ \mathcal{K} = \tfrac{1+|\Delta|^2-|S_{11}|^2-|S_{22}|^2}{2|S_{21}||S_{12}|}$$

- When K>1 and Δ <1 the circuit is unconditionally stable
- Reverse isolation $(-S_{12})$
 - Improves stability
 - Reduces spurious LO tone at the antenna

Matching

- Power matching
- Maximum power transfer to a load

•
$$Z_L = Z_S^*$$

- Input matching
 - Input impedance equal to 50 Ω
 - Return loss: $\Gamma = \frac{Z_{in} R_S}{Z_{i-1} + R_S}$
 - Ideally Γ =
- Noise matching
 - $Y_S = Y_{opt}$

- Feedback paths from the output to the input may lead to instability
- Stern stability factor

$$\bullet \ \ \mathcal{K} = \tfrac{1 + |\Delta|^2 - |S_{11}|^2 - |S_{22}|^2}{2|S_{21}||S_{12}|}$$

- When K>1 and Δ <1 the circuit is unconditionally stable
- Reverse isolation $(-S_{12})$
 - Improves stability
 - Reduces spurious LO tone at the antenna

Matching

- Power matching
- Maximum power transfer to a load

•
$$Z_L = Z_S^*$$

- Input matching
 - Input impedance equal to 50 Ω
 - Return loss: $\Gamma = \frac{Z_{in} R_S}{Z_{in} + R_S}$
 - Ideally $\Gamma = 0$
- Noise matching

$$Y_S = Y_{opt}$$

- Feedback paths from the output to the input may lead to instability
- Stern stability factor

$$\bullet \ \ \mathcal{K} = \tfrac{1+|\Delta|^2-|S_{11}|^2-|S_{22}|^2}{2|S_{21}||S_{12}|}$$

- When K>1 and ∆<1 the circuit is unconditionally stable
- Reverse isolation $(-S_{12})$
 - Improves stability
 - Reduces spurious LO tone at the antenna

Matching

- Power matching
- Maximum power transfer to a load

•
$$Z_L = Z_S^*$$

- Input matching
 - Input impedance equal to 50 Ω
 - Return loss: $\Gamma = \frac{Z_{in} R_S}{Z_{in} + R_S}$
 - Ideally $\Gamma = 0$
- Noise matching

•
$$Y_S = Y_{opt}$$

- Feedback paths from the output to the input may lead to instability
- Stern stability factor

•
$$K = \frac{1+|\Delta|^2-|S_{11}|^2-|S_{22}|^2}{2|S_{21}||S_{12}|}$$

- When K>1 and ∆<1 the circuit is unconditionally stable
- Reverse isolation $(-S_{12})$
 - Improves stability
 - Reduces spurious LO tone at the antenna

Matching

- Power matching
- Maximum power transfer to a load

•
$$Z_L = Z_S^*$$

- Input matching
 - Input impedance equal to 50 Ω
 - Return loss: $\Gamma = \frac{Z_{in} R_S}{Z_{in} + R_S}$
 - Ideally $\Gamma = 0$
- Noise matching

•
$$Y_S = Y_{opt}$$

- Feedback paths from the output to the input may lead to instability
- Stern stability factor

•
$$K = \frac{1+|\Delta|^2-|S_{11}|^2-|S_{22}|^2}{2|S_{21}||S_{12}|}$$

- When K>1 and ∆<1 the circuit is unconditionally stable
- Reverse isolation $(-S_{12})$
 - Improves stability
 - Reduces spurious LO tone at the antenna

Matching

- Power matching
- Maximum power transfer to a load

•
$$Z_L = Z_S^*$$

- Input matching
 - Input impedance equal to 50 Ω
 - Return loss: $\Gamma = \frac{Z_{in} R_S}{Z_{in} + R_S}$
 - Ideally $\Gamma = 0$
- Noise matching

•
$$Y_S = Y_{opt}$$

- Feedback paths from the output to the input may lead to instability
- Stern stability factor

•
$$K = \frac{1+|\Delta|^2-|S_{11}|^2-|S_{22}|^2}{2|S_{21}||S_{12}|}$$

- When K>1 and Δ <1 the circuit is unconditionally stable
- Reverse isolation $(-S_{12})$

Matching

- Power matching
- Maximum power transfer to a load

•
$$Z_L = Z_S^*$$

- Input matching
 - Input impedance equal to 50 Ω
 - Return loss: $\Gamma = \frac{Z_{in} R_S}{Z_{in} + R_S}$
 - Ideally $\Gamma = 0$
- Noise matching
 - $Y_S = Y_{opt}$

- Feedback paths from the output to the input may lead to instability
- Stern stability factor

•
$$K = \frac{1+|\Delta|^2-|S_{11}|^2-|S_{22}|^2}{2|S_{21}||S_{12}|}$$

- When K>1 and Δ <1 the circuit is unconditionally stable
- Reverse isolation $(-S_{12})$
 - Improves stability
 - Reduces spurious LO tone at the antenna

Power Gain

- Voltage gain, A_V should be optimized
- When $Z_{in} = Z_{out}$, $A_V = A_P$
- Several types of power gain

- - $F = SNR_{in}/SNR_{out}$
 - Ideally F = 1
- Should be kept minimum

- LNA consumes a small fraction of the overall RX power
- P_{cons} has to be considered along w. the other FoM

Power Gain

- Voltage gain, A_V should be optimized
- When $Z_{in} = Z_{out}$, $A_V = A_P$
- Several types of power gain

Noise

- Noise factor
 - $F = SNR_{in}/SNR_{out}$
 - Ideally F = 1
 - NF = 10 log F
- Should be kept minimum

Power Dissipation

- LNA consumes a small fraction of the overall RX power
- However power dissipation should be minimized
- P_{cons} has to be considered along w. the other FoM

Power Gain

- Voltage gain, A_V should be optimized
- When $Z_{in} = Z_{out}$, $A_V = A_P$
- Several types of power gain

Noise

- Noise factor
 - $F = SNR_{in}/SNR_{out}$
 - Ideally F = 1
 - \bullet NF = 10logF
- Should be kept minimum

Power Dissipation

- LNA consumes a small fraction of the overall RX power
- However power dissipation should be minimized
- P_{cons} has to be considered along w. the other FoM

Power Gain

- Voltage gain, A_V should be optimized
- When $Z_{in} = Z_{out}$, $A_V = A_P$
- Several types of power gain

Noise

- Noise factor
 - $F = SNR_{in}/SNR_{out}$
 - Ideally F = 1
 - NF = 10 log F

- LNA consumes a small fraction of the overall RX power
- P_{cons} has to be considered along w. the other FoM

Power Gain

- Voltage gain, A_V should be optimized
- When $Z_{in} = Z_{out}$, $A_V = A_P$
- Several types of power gain

Noise

- Noise factor
 - $F = SNR_{in}/SNR_{out}$
 - Ideally F = 1
 - NF = 10 log F
- Should be kept minimum

- LNA consumes a small fraction of the overall RX power
- P_{cons} has to be considered along w. the other FoM

Power Gain

- Voltage gain, A_V should be optimized
- When $Z_{in} = Z_{out}$, $A_V = A_P$
- Several types of power gain

Noise

- Noise factor
 - $F = SNR_{in}/SNR_{out}$
 - Ideally F = 1
 - NF = 10 log F
- Should be kept minimum

Power Dissipation

- LNA consumes a small fraction of the overall RX power

Power Gain

- Voltage gain, A_V should be optimized
- When $Z_{in} = Z_{out}$, $A_V = A_P$
- Several types of power gain

Noise

- Noise factor
 - $F = SNR_{in}/SNR_{out}$
 - Ideally F = 1
 - NF = 10 log F
- Should be kept minimum

Power Dissipation

- LNA consumes a small fraction of the overall RX power
- However power dissipation should be minimized
- P_{cons} has to be considered along w. the other FoM

Power Gain

- Voltage gain, A_V should be optimized
- When $Z_{in} = Z_{out}$, $A_V = A_P$
- Several types of power gain

Noise

- Noise factor
 - $F = SNR_{in}/SNR_{out}$
 - Ideally F = 1
 - NF = 10 log F
- Should be kept minimum

Power Dissipation

- LNA consumes a small fraction of the overall RX power
- However power dissipation should be minimized
- Pcons has to be considered along w. the other FoM

- Widely used LNA Topologies
 - Common Gate (CG)
 - Common Source (CS) (w. resistive feedback)
 - CS w. thermal noise cancellation
 - Cascode w. inductive degeneration
 - Transformer feedback
- Certain pros and cons
- Circuit topology dictated by the specific application the LNA has to serve

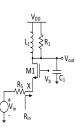
- Widely used LNA Topologies
 - Common Gate (CG)
 - Common Source (CS) (w. resistive feedback)
 - CS w. thermal noise cancellation
 - Cascode w. inductive degeneration
 - Transformer feedback
- Certain pros and cons
- Circuit topology dictated by the specific application the LNA has to serve

- Widely used LNA Topologies
 - Common Gate (CG)
 - Common Source (CS) (w. resistive feedback)
 - CS w. thermal noise cancellation
 - Cascode w. inductive degeneration
 - Transformer feedback
- Certain pros and cons
- Circuit topology dictated by the specific application the LNA has to serve

- Widely used LNA Topologies
 - Common Gate (CG)
 - Common Source (CS) (w. resistive feedback)
 - CS w. thermal noise cancellation
 - Cascode w. inductive degeneration
 - Transformer feedback
- Certain pros and cons
- Circuit topology dictated by the specific application the LNA has to serve

- Widely used LNA Topologies
 - Common Gate (CG)
 - Common Source (CS) (w. resistive feedback)
 - CS w. thermal noise cancellation
 - Cascode w. inductive degeneration
 - Transformer feedback
- Certain pros and cons
- Circuit topology dictated by the specific application the LNA has to serve

- Widely used LNA Topologies
 - Common Gate (CG)
 - Common Source (CS) (w. resistive feedback)
 - CS w. thermal noise cancellation
 - Cascode w. inductive degeneration
 - Transformer feedback
- Certain pros and cons
- Circuit topology dictated by the specific application the LNA has to serve

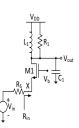

- Widely used LNA Topologies
 - Common Gate (CG)
 - Common Source (CS) (w. resistive feedback)
 - CS w. thermal noise cancellation
 - Cascode w. inductive degeneration
 - Transformer feedback
- Certain pros and cons
- Circuit topology dictated by the specific application the LNA has to serve

- Widely used LNA Topologies
 - Common Gate (CG)
 - Common Source (CS) (w. resistive feedback)
 - CS w. thermal noise cancellation
 - Cascode w. inductive degeneration
 - Transformer feedback
- Certain pros and cons
- Circuit topology dictated by the specific application the LNA has to serve

CG Stage w. Inductive Load

- Input impedance
 - 1/gms
- - $A_V \equiv \frac{V_{out}}{V_{in}} = \frac{R_1}{2Rc}$
- - $F = 1 + \gamma + 4 \frac{R_S}{R_1}$

- Even if $4 \frac{R_S}{R_1} \ll 1 + \gamma$, for $\gamma = 1$, NF=3 dB
- γ=1, very optimistic scenario

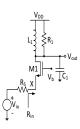


Common Gate LNA

CG Stage w. Inductive Load

- Input impedance
 - 1/gms
- Voltage gain

- Even if $4 \frac{R_S}{R_1} \ll 1 + \gamma$, for $\gamma = 1$, NF=3 dB
- γ=1, very optimistic scenario

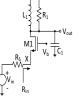


CG Stage w. Inductive Load

- Input impedance
 - 1/gms
- Voltage gain

Thermal noise

•
$$F = 1 + \gamma + 4 \frac{R_S}{R_1}$$



- Even if $4 \frac{R_S}{R_1} \ll 1 + \gamma$, for $\gamma = 1$, NF=3 dB
- γ=1, very optimistic scenario

CG Stage w. Inductive Load

- Input impedance
 - 1/gms
- Voltage gain

- Thermal noise
 - $F = 1 + \gamma + 4 \frac{R_S}{R_1}$

Limitation

- Even if $4\frac{R_S}{R_1} \ll 1 + \gamma$, for $\gamma = 1$, NF=3 dB
- γ=1, very optimistic scenario

Common Source LNA

CS Stage

- CS topology w. resistive load
- Capacitive input impedance

$$\bullet \quad Z_{in} = \frac{R_S}{1 + \frac{j\omega}{\omega_p}}, \, \omega_p = \frac{1}{R_S(C_{gs} + MC_{gd})}$$

- Miller factor, $M = 1 + g_{m1}R_L$
- Capacitive feedback from output to input through C_{gd}
 - Poor reverse isolation

Cascode Stag

- Cascode topology w. resistive load
- Suffers from low gain

$$R_L < \frac{V_{DD} - V_{DS,sat1} - V_{DS,sat2}}{ID}$$

• For
$$V_{DS, sat} = 0.25V$$
, and $V_{DD} = 1.2V$, $A_V = 15dB$

Replace R₁ with an inductor load

CS Stage

- CS topology w. resistive load
- Capacitive input impedance

$$\bullet \quad Z_{in} = \frac{R_S}{1 + \frac{j\omega}{\omega_p}}, \, \omega_p = \frac{1}{R_S(C_{gs} + MC_{gd})}$$

- Miller factor, $M = 1 + g_{m1}R_L$
- Capacitive feedback from output to input through C_{ed}
 - Poor reverse isolation

Cascode Stage

- Cascode topology w. resistive load
- Suffers from low gain

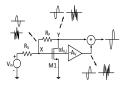
$$R_L < \frac{V_{DD} - V_{DS,sat1} - V_{DS,sat2}}{I_D}$$

- For $V_{DS,sat} = 0.25V$, and $V_{DD} = 1.2V$, $A_V = 15dB$
- Replace R_I with an inductor load

Common Source LNA

CS Stage w. Resistive Feedback

- R_F senses the output voltage and returns a current to the input
- Capacitive component due to C_{gs} still present
- R_F contributes to noise
 - $F = 1 + 4 \frac{R_S}{R_F} + \gamma (g_{m1} + g_{m2}) R_S$
 - NF exceeds 3 dB


CS Stage w. Noise Cancellation

- Based on CS w. resistive feedback
- Noise currents at points X and Y have equal sign
- Signal voltages at X and Y have opposite signs
- Noise cancellation.

•
$$V_{out,n} = V_{Y,n} - V_{X,n}A_V \Rightarrow A_{vc} = \frac{V_{Y,n}}{V_{Y,n}} = 1 + \frac{R_F}{R_C}$$

$$A_{VFc} = \frac{V_{out}}{V_X} = -2\frac{R_F}{R_S}$$

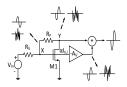
Common Source LNA

CS Stage w. Resistive Feedback

- RF senses the output voltage and returns a current to the input
- Capacitive component due to C_{gs} still present
- R_F contributes to noise

•
$$F = 1 + 4 \frac{R_S}{R_F} + \gamma (g_{m1} + g_{m2}) R_S$$

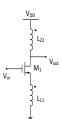
NF exceeds 3 dB


CS Stage w. Noise Cancellation

- Based on CS w resistive feedback
- Noise currents at points X and Y have equal sign
- Signal voltages at X and Y have opposite signs
- Noise cancellation

•
$$V_{out,n} = V_{Y,n} - V_{X,n}A_V \Rightarrow A_{VC} = \frac{V_{Y,n}}{V_{X,n}} = 1 + \frac{R_F}{R_S}$$

$$A_{VFc} = \frac{V_{out}}{V_X} = -2\frac{R_F}{R_S}$$


Transformer Feedback LNA

- C_{rd} canceled through an additional path from output to input
- Cancellation when

•
$$n = \sqrt{L_{22}/L_{11}}$$

•
$$k = M/\sqrt{L_{11}L_{22}}$$

- L_{11} used for source degeneration as well
- k affects gain, input and output impedance
 - Complex equations

Transformer Feedback LNA

- C_{rd} canceled through an additional path from output to input
- Cancellation when

•
$$n = \sqrt{L_{22}/L_{11}}$$

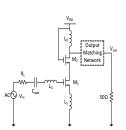
•
$$k = M/\sqrt{L_{11}L_{22}}$$

- L_{11} used for source degeneration as well
- k affects gain, input and output impedance
 - Complex equations

Cascode LNA w. Inductive Degeneration

Cascode Stage w. Inductive Degeneration

- Input impedance


 - L_S is chosen so that $Real(Z_{in}) = 50 \Omega$ • L_G is chosen so that $Imag(Z_{in}) = 0$
 - Z_{in} purely reactive at ω_0
- Voltage gain

•
$$A_V \equiv \frac{V_{out}}{V_{in}} = \frac{\omega_T}{2\omega_0} \cdot \frac{R_L}{R_S}$$

- Improves w. technology scaling
- Noise factor

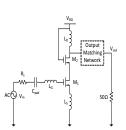
•
$$F = 1 + g_m \gamma R_S (\frac{\omega_0}{\omega_T})^2$$

- Power constrained noise optimization
 - $W_{opt,P} \simeq \frac{1}{3\omega I CovRc}$
- Power constrained simultaneous noise impedance matching (SNIM)
 - Extra capacitance in parallel w. C_{gs}

Cascode LNA w. Inductive Degeneration

Cascode Stage w. Inductive Degeneration

- Input impedance

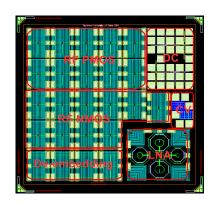

 - L_S is chosen so that $Real(Z_{in}) = 50 \Omega$ • L_G is chosen so that $Imag(Z_{in}) = 0$
 - Z_{in} purely reactive at ω_0
- Voltage gain

•
$$A_V \equiv \frac{V_{out}}{V_{in}} = \frac{\omega_T}{2\omega_0} \cdot \frac{R_L}{R_S}$$

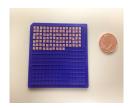

- Improves w. technology scaling
- Noise factor

•
$$F = 1 + g_m \gamma R_S (\frac{\omega_0}{\omega_T})^2$$

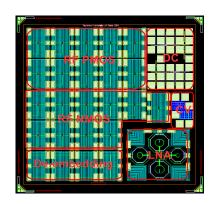
- Power constrained noise optimization
 - $W_{opt,P} \simeq \frac{1}{3\omega I CovRc}$
- Power constrained simultaneous noise impedance matching (SNIM)
 - Extra capacitance in parallel w. C_{gs}

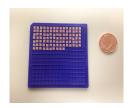


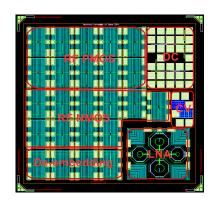
Tapeout of an RF Test Chip



- 90 nm CMOS from TSMC
 - Chip area 3.5mm²
- - 10 n-MOS, 10 p-MOS

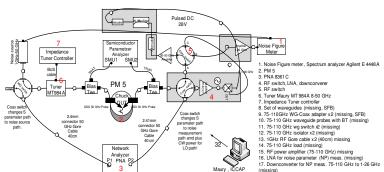

 - L = 240nm 100nm


Tapeout of an RF Test Chip


- 90 nm CMOS from TSMC
 - Chip area 3.5 mm²
- RF structures
 - 10 n-MOS, 10 p-MOS
 - Multifinger
 - L = 240nm 100nm
- Two port networl

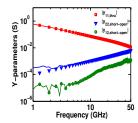
Tapeout of an RF Test Chip

- 90 nm CMOS from TSMC
 - Chip area 3.5mm²
- RF structures
 - 10 n-MOS, 10 p-MOS
 - Multifinger
 - L = 240nm 100nm
- Two port network

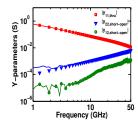

RF and Noise Measurements

Schroter & Sakalas, TU Dresden

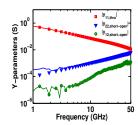
CEDIC Laboratory Master plan Part 2

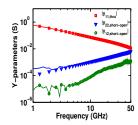

Prober PM 5: High frequency standard and special measurements

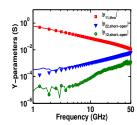
RF, DC and Noise 8 -50 GHz noise/lopad pull measurement system



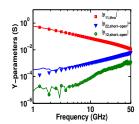
- RF De-embedding
- Noise De-embedding


 - Cascade configuration (Chen et al., TED 2001)

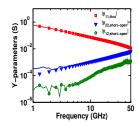

- RF De-embedding
 - Intrinsic performance of Device Under Test (DUT)
 - Improved three-step de-embedding (Vandamme et al., TED 2001)
- Noise De-embedding
 - Noise characteristics of the DUT
 - Cascade configuration (Chen et al., TED 2001)
- Verification


- RF De-embedding
 - Intrinsic performance of Device Under Test (DUT)
 - Improved three-step de-embedding (Vandamme et al., TED 2001)
- Noise De-embedding
 - Noise characteristics of the DUT
 - Cascade configuration (Chen et al., TED 2001)
- Verification

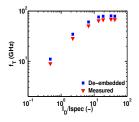
- RF De-embedding
 - Intrinsic performance of Device Under Test (DUT)
 - Improved three-step de-embedding (Vandamme et al., TED 2001)
- Noise De-embedding
 - Noise characteristics of the DUT
 - Cascade configuration (Chen et al., TED 2001)
- Verification

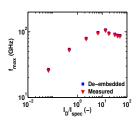


- RF De-embedding
 - Intrinsic performance of Device Under Test (DUT)
 - Improved three-step de-embedding (Vandamme et al., TED 2001)
- Noise De-embedding
 - Noise characteristics of the DUT
 - Cascade configuration (Chen et al., TED 2001)
- Verification

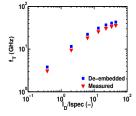


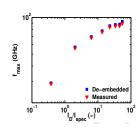
RF De-embedding

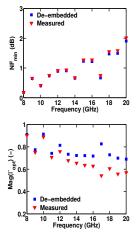

- Intrinsic performance of Device Under Test (DUT)
- Improved three-step de-embedding (Vandamme et al., TED 2001)
- Noise De-embedding
 - Noise characteristics of the DUT
 - Cascade configuration (Chen et al., TED 2001)
- Verification

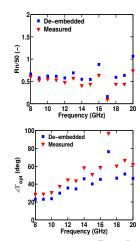


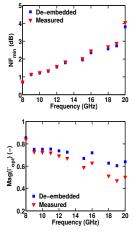
- RF De-embedding
 - Intrinsic performance of Device Under Test (DUT)
 - Improved three-step de-embedding (Vandamme et al., TED 2001)
- Noise De-embedding
 - Noise characteristics of the DUT
 - Cascade configuration (Chen et al., TED 2001)
- Verification

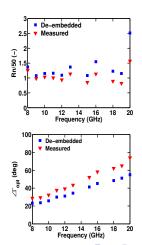



NMOS (L = 100 nm, $W = 40 \times 2 um$, $V_{GS} = 0.65 V$, $V_{DS} = 1.2 V$)



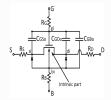



• NMOS (L = 100nm, W = 40x2um, $V_{GS} = 0.65V$, $V_{DS} = 1.2V$)



Noise De-embedding Results

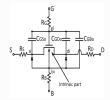
• PMOS (L = 100nm, $W = 40 \times 2$ um, $V_{GS} = -0.65 V$, $V_{DS} = -1.2 V$)



HF Modeling

- With frequency increase design characteristics start to degrade
 - Gain, NF_{min}
- At frequencies well below f₁
 - (Ouasi) Static operation
 - Immediate current response to every voltage change
- Above quasi-static frequency, Ω_{qs}
 - Charges need time to adjust to voltage changes
 - Charge density dependent on the past voltage values
- Ω_{qs} stands as a FoM
 - Frequency the device can reach wo.
 accounting for the extrinsic components
- \blacksquare Performance degradation when Ω_{qs} 5-7 times higher than f_0

- MOS extrinsic part
 - Significant w. frequency increase
- Connection between intrinsic and extrinsic parts
 - Source-drain extensions
 - Parasitic resistances R_S and R_D
- Simple equivalent circuit
 - Experiences limitations

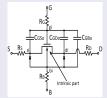


HF Modeling

HF Modeling

- With frequency increase design characteristics start to degrade
 - Gain, NF_{min}
- At frequencies well below f_T
 - (Quasi) Static operation
 - Immediate current response to every voltage change
- Above quasi-static frequency, Ω_{qs}
 - Charges need time to adjust to voltage changes
 - Charge density dependent on the past voltage values
- Ω_{qs} stands as a FoM
 - Frequency the device can reach wo. accounting for the extrinsic components
- Performance degradation when Ω_{qs} 5-7 times higher than f_0

- MOS extrinsic part
 - Significant w. frequency increase
- Connection between intrinsic and extrinsic parts
 - Source-drain extensions
 - Parasitic resistances R_S and R_D
- Simple equivalent circuit
 - Experiences limitations



HF Modeling

HF Modeling

- With frequency increase design characteristics start to degrade
 - Gain, NF_{min}
- At frequencies well below f_T
 - (Quasi) Static operation
 - Immediate current response to every voltage change
- Above quasi-static frequency, Ω_{qs}
 - Charges need time to adjust to voltage changes
 - Charge density dependent on the past voltage values
- Ω_{qs} stands as a FoM
 - Frequency the device can reach wo.
 accounting for the extrinsic components
- Performance degradation when Ω_{qs} 5-7 times higher than f_0

- MOS extrinsic part
 - Significant w. frequency increase
- Connection between intrinsic and extrinsic parts
 - Source-drain extensions
 - Parasitic resistances R_S and R_D
- Simple equivalent circuit
 - Experiences limitations

- Y-parameters: convenient way to extract FoM and device parameters
 - $Y_{11} \cong \omega^2 R_G C_G^2 + j\omega C_G$
 - $Y_{12} \cong -\omega^2 R_G C_{GD} C_G j\omega C_{GD}$
 - $Y_{21} \cong G_m \omega^2 R_G C_G (C_{GD} + C_m) j\omega (C_{GD} + C_m)$
 - $Y_{22} \cong G_{ds} + \omega^2 R_G (C_G C_{BD} + C_G C_{GD} + C_{GD} C_m) + j\omega (C_{BD} + C_{GD})$
- $C_G = \frac{Imag(Y_{11})}{\omega}$
- $C_{GD} = \frac{Imag(Y_{12})}{\omega}$
- $R_G = \frac{Real(Y_{11})}{(Imag(Y_{11}))^2}$

Y-Parameters

- Y-parameters: convenient way to extract FoM and device parameters
 - $Y_{11} \cong \omega^2 R_G C_G^2 + j\omega C_G$
 - $Y_{12} \cong -\omega^2 R_G C_{GD} C_G j\omega C_{GD}$
 - $Y_{21} \cong G_m \omega^2 R_G C_G (C_{GD} + C_m) j\omega (C_{GD} + C_m)$
 - $Y_{22} \cong G_{ds} + \omega^2 R_G (C_G C_{BD} + C_G C_{GD} + C_{GD} C_m) + j\omega (C_{BD} + C_{GD})$
- $C_G = \frac{Imag(Y_{11})}{\omega}$
- $C_{GD} = \frac{Imag(Y_{12})}{\omega}$
- $R_G = \frac{Real(Y_{11})}{(Imag(Y_{11}))^2}$

Y-Parameters

- Y-parameters: convenient way to extract FoM and device parameters
 - $Y_{11} \cong \omega^2 R_G C_G^2 + j\omega C_G$
 - $Y_{12} \cong -\omega^2 R_G C_{GD} C_G j\omega C_{GD}$
 - $Y_{21} \cong G_m \omega^2 R_G C_G (C_{GD} + C_m) j\omega (C_{GD} + C_m)$
 - $Y_{22} \cong G_{ds} + \omega^2 R_G (C_G C_{BD} + C_G C_{GD} + C_{GD} C_m) + j\omega (C_{BD} + C_{GD})$
- $C_G = \frac{Imag(Y_{11})}{\omega}$
- $C_{GD} = \frac{Imag(Y_{12})}{\omega}$
- $R_G = \frac{Real(Y_{11})}{(Imag(Y_{11}))^2}$

Y-Parameters

- Y-parameters: convenient way to extract FoM and device parameters
 - $Y_{11} \cong \omega^2 R_G C_G^2 + j\omega C_G$
 - $Y_{12} \cong -\omega^2 R_G C_{GD} C_G j\omega C_{GD}$
 - $Y_{21} \cong G_m \omega^2 R_G C_G (C_{GD} + C_m) j\omega (C_{GD} + C_m)$
 - $Y_{22} \cong G_{ds} + \omega^2 R_G (C_G C_{BD} + C_G C_{GD} + C_{GD} C_m) + j\omega (C_{BD} + C_{GD})$
- $C_G = \frac{Imag(Y_{11})}{\omega}$
- $C_{GD} = \frac{Imag(Y_{12})}{\omega}$
- $\qquad \qquad R_G = \frac{\textit{Real}(Y_{11})}{(\textit{Imag}(Y_{11}))^2}$

f_T , f_{max} and G_m/I_D

- Unity gain frequency (f_T)
 - Frequency where current gain of a CS amplifier falls to unity

$$\bullet \quad f_T = \frac{f_{spot}}{Imag(\frac{Y_{11}}{Y_{21}})}$$

- Can be extrapolated from h_{21} in S.I., saturation, where the slope is -20dB/dec
- Maximum oscillation frequency (f_{max})
 - Calculated through unilateral gain
 - Maximum available gain assuming neutralized device

•
$$U = \frac{|Y_{21} - Y_{12}|^2}{4[real(Y_{11})Real(Y_{22}) - Real(Y_{12})Real(Y_{21})]}$$

- $f_{max} = \sqrt{U} f_{spot}$
- Can be extrapolated from U, in S.I., saturation
- Transconductance efficiency (G_m/I_D)

- - Frequency where current gain of a CS amplifier falls to unity

$$\bullet \quad f_T = \frac{f_{spot}}{Imag(\frac{Y_{11}}{Y_{21}})}$$

Unity gain frequency (f_T)

- Can be extrapolated from h_{21} in S.I., saturation, where the slope is -20dB/dec
- - Calculated through unilateral gain
 - Maximum available gain assuming neutralized device

$$U = \frac{|Y_{21} - Y_{12}|^2}{4[real(Y_{11})Real(Y_{22}) - Real(Y_{12})Real(Y_{21})]}$$

- $f_{max} = \sqrt{U} f_{snot}$
- Can be extrapolated from U, in S.I., saturation

- Unity gain frequency (f_T)
 - Frequency where current gain of a CS amplifier falls to unity

$$f_T = \frac{f_{spot}}{Imag(\frac{Y_{11}}{Y_{21}})}$$

- Can be extrapolated from h_{21} in S.I., saturation, where the slope is -20dB/dec
- Maximum oscillation frequency (f_{max})
 - Calculated through unilateral gain
 - Maximum available gain assuming neutralized device

$$U = \frac{|Y_{21} - Y_{12}|^2}{4[real(Y_{11})Real(Y_{22}) - Real(Y_{12})Real(Y_{21})]}$$

- $f_{max} = \sqrt{U} f_{spot}$
- Can be extrapolated from U, in S.I., saturation
- Transconductance efficiency (G_m/I_D)

- Unity gain frequency (f_T)
 - Frequency where current gain of a CS amplifier falls to unity

$$f_T = \frac{f_{spot}}{Imag(\frac{Y_{11}}{Y_{21}})}$$

- Can be extrapolated from h_{21} in S.I., saturation, where the slope is -20dB/dec
- Maximum oscillation frequency (f_{max}
 - Calculated through unilateral gain
 - Maximum available gain assuming neutralized device

$$U = \frac{|Y_{21} - Y_{12}|^2}{4[real(Y_{11})Real(Y_{22}) - Real(Y_{12})Real(Y_{21})]}$$

- $f_{max} = \sqrt{U} f_{spot}$
- Can be extrapolated from U, in S.I., saturation
- Transconductance efficiency (G_m/I_D)

•
$$\frac{G_m U_T}{I_D} = \frac{2}{n(\sqrt{4IC+1}+1)}$$

- Unity gain frequency (f_T)
 - Frequency where current gain of a CS amplifier falls to unity

$$f_T = \frac{f_{spot}}{Imag(\frac{Y_{11}}{Y_{21}})}$$

- Can be extrapolated from h_{21} in S.I., saturation, where the slope is -20dB/dec
- Maximum oscillation frequency (f_{max})
 - Calculated through unilateral gain
 - Maximum available gain assuming neutralized device

$$U = \frac{|Y_{21} - Y_{12}|^2}{4[real(Y_{11})Real(Y_{22}) - Real(Y_{12})Real(Y_{21})]}$$

- $f_{max} = \sqrt{U} f_{spot}$
- Can be extrapolated from U, in S.I., saturation
- Transconductance efficiency (G_m/I_D)

- - Frequency where current gain of a CS amplifier falls to unity
 - $f_T = \frac{f_{spot}}{Imag(\frac{Y_{11}}{Y_{21}})}$

Unity gain frequency (f_T)

- Can be extrapolated from h_{21} in S.I., saturation, where the slope is -20dB/dec
- Maximum oscillation frequency (f_{max})
 - Calculated through unilateral gain
 - Maximum available gain assuming neutralized device

$$U = \frac{|Y_{21} - Y_{12}|^2}{4[real(Y_{11})Real(Y_{22}) - Real(Y_{12})Real(Y_{21})]}$$

- $f_{max} = \sqrt{U} f_{spot}$
- Can be extrapolated from U, in S.I., saturation
- Transconductance efficiency (G_m/I_D)

- Unity gain frequency (f_T)
 - Frequency where current gain of a CS amplifier falls to unity

$$f_T = \frac{f_{spot}}{Imag(\frac{Y_{11}}{Y_{21}})}$$

- Can be extrapolated from h_{21} in S.I., saturation, where the slope is -20dB/dec
- Maximum oscillation frequency (f_{max})
 - Calculated through unilateral gain
 - Maximum available gain assuming neutralized device

$$U = \frac{|Y_{21} - Y_{12}|^2}{4[real(Y_{11})Real(Y_{22}) - Real(Y_{12})Real(Y_{21})]}$$

•
$$f_{max} = \sqrt{U} f_{spot}$$

- Can be extrapolated from U, in S.I., saturation
- Transconductance efficiency (G_m/I_D)

- Unity gain frequency (f_T)
 - Frequency where current gain of a CS amplifier falls to unity

$$f_T = \frac{f_{spot}}{Imag(\frac{Y_{11}}{Y_{21}})}$$

- Can be extrapolated from h_{21} in S.I., saturation, where the slope is -20dB/dec
- Maximum oscillation frequency (f_{max})
 - Calculated through unilateral gain
 - Maximum available gain assuming neutralized device

$$\bullet \quad U = \frac{|Y_{21} - Y_{12}|^2}{4[\mathit{real}(Y_{11})\mathit{Real}(Y_{22}) - \mathit{Real}(Y_{12})\mathit{Real}(Y_{21})]}$$

•
$$f_{max} = \sqrt{U} f_{spot}$$

- Can be extrapolated from U, in S.I., saturation
- Transconductance efficiency (G_m/I_D)

- Unity gain frequency (f_T)
 - Frequency where current gain of a CS amplifier falls to unity

$$f_T = \frac{f_{spot}}{Imag(\frac{Y_{11}}{Y_{21}})}$$

- Can be extrapolated from h_{21} in S.I., saturation, where the slope is -20dB/dec
- Maximum oscillation frequency (f_{max})
 - Calculated through unilateral gain
 - Maximum available gain assuming neutralized device

$$\bullet \quad U = \frac{|Y_{21} - Y_{12}|^2}{4[real(Y_{11})Real(Y_{22}) - Real(Y_{12})Real(Y_{21})]}$$

•
$$f_{max} = \sqrt{U} f_{spot}$$

- Can be extrapolated from U, in S.I., saturation
- Transconductance efficiency (G_m/I_D)

•
$$\frac{G_m U_T}{I_D} = \frac{2}{n(\sqrt{4IC+1}+1)}$$

Maximum in W.I.

$f_{\rm T}$, $f_{\rm max}$ and $G_{\rm m}/I_{\rm D}$

- Unity gain frequency (f_T)
 - Frequency where current gain of a CS amplifier falls to unity

$$\bullet \quad f_T = \frac{f_{spot}}{Imag(\frac{Y_{11}}{Y_{21}})}$$

- Can be extrapolated from h_{21} in S.I., saturation, where the slope is -20dB/dec
- Maximum oscillation frequency (fmax)
 - Calculated through unilateral gain
 - Maximum available gain assuming neutralized device

$$\bullet \quad U = \frac{|Y_{21} - Y_{12}|^2}{4[real(Y_{11})Real(Y_{22}) - Real(Y_{12})Real(Y_{21})]}$$

- $f_{max} = \sqrt{U} f_{spot}$
- Can be extrapolated from U, in S.I., saturation
- Transconductance efficiency (G_m/I_D)

•
$$\frac{G_m U_T}{I_D} = \frac{2}{n(\sqrt{4IC+1}+1)}$$

- Unity gain frequency (f_T)
 - · Frequency where current gain of a CS amplifier falls to unity
 - $f_T = \frac{f_{spot}}{Imag(\frac{Y_{11}}{Y_{21}})}$
 - Can be extrapolated from h_{21} in S.I., saturation, where the slope is -20dB/dec
- Maximum oscillation frequency (f_{max})
 - Calculated through unilateral gain
 - Maximum available gain assuming neutralized device

$$\bullet \quad U = \frac{|Y_{21} - Y_{12}|^2}{4[real(Y_{11})Real(Y_{22}) - Real(Y_{12})Real(Y_{21})]}$$

- $f_{max} = \sqrt{U} f_{spot}$
- Can be extrapolated from U, in S.I., saturation
- Transconductance efficiency (G_m/I_D)

- Unity gain frequency (f_T)
 - Frequency where current gain of a CS amplifier falls to unity

$$f_T = \frac{f_{spot}}{Imag(\frac{Y_{11}}{Y_{21}})}$$

- Can be extrapolated from h_{21} in S.I., saturation, where the slope is -20dB/dec
- Maximum oscillation frequency (f_{max})
 - Calculated through unilateral gain
 - Maximum available gain assuming neutralized device

$$\bullet \quad U = \frac{|Y_{21} - Y_{12}|^2}{4[real(Y_{11})Real(Y_{22}) - Real(Y_{12})Real(Y_{21})]}$$

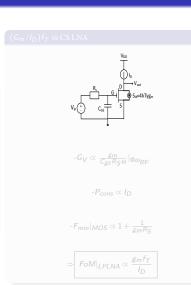
- $f_{max} = \sqrt{U} f_{spot}$
- Can be extrapolated from U, in S.I., saturation
- Transconductance efficiency (G_m/I_D)

Maximum in W.I.

- Unity gain frequency (f_T)
 - Frequency where current gain of a CS amplifier falls to unity

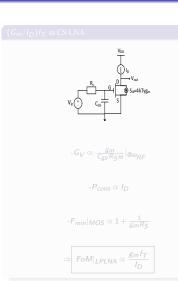
$$f_T = \frac{f_{spot}}{Imag(\frac{Y_{11}}{Y_{21}})}$$

- Can be extrapolated from h_{21} in S.I., saturation, where the slope is -20dB/dec
- Maximum oscillation frequency (f_{max})
 - Calculated through unilateral gain
 - Maximum available gain assuming neutralized device

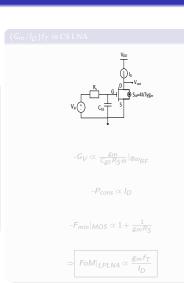

$$\bullet \quad U = \frac{|Y_{21} - Y_{12}|^2}{4 \left[real(Y_{11}) Real(Y_{22}) - Real(Y_{12}) Real(Y_{21}) \right] }$$

- $f_{max} = \sqrt{U} f_{spot}$
- Can be extrapolated from U, in S.I., saturation
- Transconductance efficiency (G_m/I_D)

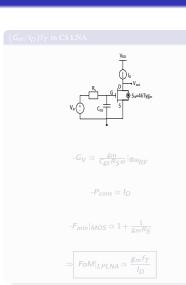
Maximum in W.I.


- Transconductance frequency product (TFP)
 - $TFP = (G_m/I_D) \cdot f_T$
 - Used to optimize low-power circuits (Mangla et al., MJ 2013)
 - Stands as a FoM for LNA design
 - $FoM_{LPLNA} = \frac{G_V f_{RF}}{(F-1)P_{cons}}$

- Transconductance frequency product (TFP)
 - $TFP = (G_m/I_D) \cdot f_T$
 - Used to optimize low-power circuits (Mangla et al., MJ 2013)
 - Stands as a FoM for LNA design
 - $FoM_{LPLNA} = \frac{G_V f_{RF}}{(F-1)P_{cons}}$

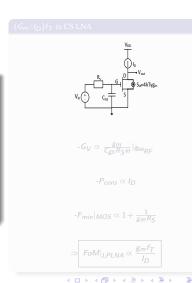

- Transconductance frequency product (TFP)
 - $TFP = (G_m/I_D) \cdot f_T$
 - Used to optimize low-power circuits

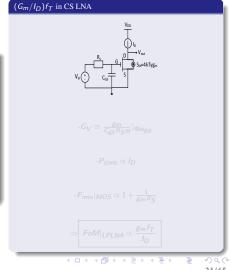
•
$$FoM_{LPLNA} = \frac{G_V f_{RF}}{(F-1)P_{cons}}$$


- Transconductance frequency product (TFP)
 - $TFP = (G_m/I_D) \cdot f_T$
 - Used to optimize low-power circuits (Mangla et al., MJ 2013)

 - $FoM_{LPLNA} = \frac{G_V f_{RF}}{(F-1)P_{cons}}$

- Transconductance frequency product (TFP)
 - $TFP = (G_m/I_D) \cdot f_T$
 - Used to optimize low-power circuits (Mangla et al., MJ 2013)
 - Stands as a FoM for LNA design


•
$$FoM_{LPLNA} = \frac{G_V f_{RF}}{(F-1)P_{cons}}$$


FoM for LNA Design

$FoM_{(G_m/I_D)}f_T$

- Transconductance frequency product (TFP)
 - $TFP = (G_m/I_D) \cdot f_T$
 - Used to optimize low-power circuits (Mangla et al., MJ 2013)
 - Stands as a FoM for LNA design
 - $FoM_{LPLNA} = \frac{G_V f_{RF}}{(F-1)P_{cons}}$

- Transconductance frequency product (TFP)
 - $TFP = (G_m/I_D) \cdot f_T$
 - Used to optimize low-power circuits (Mangla et al., MJ 2013)
 - Stands as a FoM for LNA design
 - $FoM_{LPLNA} = \frac{G_V f_{RF}}{(F-1)P_{cons}}$

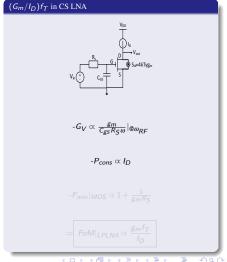
$(G_m/I_D)f_T$ in CS LNA

$FoM_{(G_m/I_D)}f_T$

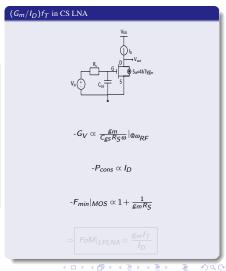
- Transconductance frequency product (TFP)
 - $TFP = (G_m/I_D) \cdot f_T$

FoM for LNA Design

- Used to optimize low-power circuits (Mangla et al., MJ 2013)
- Stands as a FoM for LNA design
- $FoM_{LPLNA} = \frac{G_V f_{RF}}{(F-1)P_{cons}}$


$$-G_V \propto rac{g_m}{C_{gs}R_S\omega}|_{@\omega_{RF}}$$

$$-P_{cons} \propto I_D$$


$$-F_{min}|_{MOS} \propto 1 + \frac{1}{g_m R_S}$$

$$\Rightarrow FoM|_{LPLNA} \propto \frac{g_m f_T}{I_D}$$

- Transconductance frequency product (TFP)
 - $TFP = (G_m/I_D) \cdot f_T$
 - Used to optimize low-power circuits (Mangla et al., MJ 2013)
 - Stands as a FoM for LNA design
 - $FoM_{LPLNA} = \frac{G_V f_{RF}}{(F-1)P_{cons}}$

- Transconductance frequency product (TFP)
 - $TFP = (G_m/I_D) \cdot f_T$
 - Used to optimize low-power circuits (Mangla et al., MJ 2013)
 - Stands as a FoM for LNA design
 - $FoM_{LPLNA} = \frac{G_V f_{RF}}{(F-1)P_{cons}}$

- Transconductance frequency product (TFP)
 - $TFP = (G_m/I_D) \cdot f_T$
 - Used to optimize low-power circuits (Mangla et al., MJ 2013)
 - Stands as a FoM for LNA design
 - $FoM_{LPLNA} = \frac{G_V f_{RF}}{(F-1)P_{cons}}$

$(G_m/I_D)f_T$ in CS LNA

$$-G_V \propto \frac{gm}{C_{gs}R_S\omega}|_{@\omega_{RF}}$$

$$-P_{cons} \propto I_D$$

$$-F_{min}|_{MOS} \propto 1 + \frac{1}{g_m R_S}$$

$$\Rightarrow FoM|_{LPLNA} \propto \frac{g_m f_T}{I_D}$$

G_m^2/I_D and GTFP

•
$$FoM_{LPLNA} = \frac{G_P}{(F-1)P_{cons}} \propto (\frac{G_m^2}{I_D})^2$$

•
$$GTFP = TFP(\frac{G_m}{G_{ds}})$$

Figures of Merit

G_m^2/I_D and GTFP

G_m^2/I_D

• Recently (Song et al., EDL, 2008) it was shown that excluding f_{RF}

•
$$FoM_{LPLNA} = \frac{G_P}{(F-1)P_{cons}} \propto (\frac{G_m^2}{I_D})^2$$

- Representative of cascode topology
- Easy to evaluate from DC measurements
- Has not been studied w. length scaling

GTFP

• Combines TFP w. intrinsic voltage gair

•
$$GTFP = TFP(\frac{G_m}{G_{ds}})$$

G_m^2/I_D

• Recently (Song et al., EDL, 2008) it was shown that excluding f_{RF}

•
$$FoM_{LPLNA} = \frac{G_P}{(F-1)P_{cons}} \propto (\frac{G_m^2}{I_D})^2$$

- Representative of cascode topology
- Easy to evaluate from DC measurements
- Has not been studied w. length scaling

GTFP

Combines TFP w. intrinsic voltage gair

•
$$GTFP = TFP(\frac{G_m}{G_{ds}})$$

G_m^2/I_D

• Recently (Song et al., EDL, 2008) it was shown that excluding f_{RF}

•
$$FoM_{LPLNA} = \frac{G_P}{(F-1)P_{cons}} \propto (\frac{G_m^2}{I_D})^2$$

- Representative of cascode topology
- Easy to evaluate from DC measurements
- Has not been studied w. length scaling

GTFF

• Combines TFP w. intrinsic voltage gain

•
$$GTFP = TFP(\frac{G_m}{G_{ds}})$$

G_m^2/I_D

• Recently (Song et al., EDL, 2008) it was shown that excluding f_{RF}

•
$$FoM_{LPLNA} = \frac{G_P}{(F-1)P_{cons}} \propto (\frac{G_m^2}{I_D})^2$$

- Representative of cascode topology
- Easy to evaluate from DC measurements
- Has not been studied w. length scaling

GTFF

Combines TFP w. intrinsic voltage gair

•
$$GTFP = TFP(\frac{G_m}{G_{ds}})$$

G_m^2/I_D

• Recently (Song et al., EDL, 2008) it was shown that excluding f_{RF}

•
$$FoM_{LPLNA} = \frac{G_P}{(F-1)P_{cons}} \propto (\frac{G_m^2}{I_D})^2$$

- Representative of cascode topology
- Easy to evaluate from DC measurements
- Has not been studied w. length scaling

GTFP

• Combines TFP w. intrinsic voltage gain

•
$$GTFP = TFP(\frac{G_m}{G_{de}})$$

• G_m/G_{dc} decreases w. length scaling

G_m^2/I_D and GTFP

G_m^2/I_D

• Recently (Song et al., EDL, 2008) it was shown that excluding f_{RF}

•
$$FoM_{LPLNA} = \frac{G_P}{(F-1)P_{cons}} \propto (\frac{G_m^2}{I_D})^2$$

- Representative of cascode topology
- Easy to evaluate from DC measurements
- Has not been studied w. length scaling

GTFP

- Ocombines TFP w. intrinsic voltage gain
 - $GTFP = TFP(\frac{G_m}{G_{de}})$
- G_m/G_{ds} decreases w. length scaling

- Non-linearities expressed through
 - Harmonics
 - Intermodulation (two-tone test)
- Mainly due to the non-linear I_D - V_G characteristic

•
$$G_m = \frac{\partial I_D}{\partial V_{GS}}, G_{m2} = \frac{\partial^2 I_D}{\partial V_{GS}^2}, G_{m3} = \frac{\partial^3 I_D}{\partial V_{GS}^3}$$

$$P_{1dB} = \left| \frac{G_m}{13.8 G_{m3} R_S} \right|$$

$$P_{IP3} = \begin{vmatrix} \frac{2G_m}{3G_{m3}R_S} \\ \frac{24G_m}{3G_{m3}R_S} \end{vmatrix}$$

•
$$V_{IP3} = \sqrt{\frac{24G_m}{G_{m2}}}$$

- Contradicting results in literature
 - Non-linearities behavior w. length scaling and inversion level

- Non-linearities expressed through
 - Harmonics
 - Intermodulation (two-tone test)
- Mainly due to the non-linear I_D - V_G characteristic

•
$$G_m = \frac{\partial I_D}{\partial V_{GS}}, G_{m2} = \frac{\partial^2 I_D}{\partial V_{GS}^2}, G_{m3} = \frac{\partial^3 I_D}{\partial V_{GS}^3}$$

$$P_{1dB} = \left| \frac{G_m}{13.8 G_{m3} R_S} \right|$$

$$P_{IP3} = \left| \frac{2G_m}{3G_{m3}R_S} \right|$$

•
$$V_{IP3} = \sqrt{\frac{24G_m}{G_{m3}}}$$

- Contradicting results in literature
 - Non-linearities behavior w. length scaling and inversion level

- Non-linearities expressed through
 - Harmonics
 - Intermodulation (two-tone test)
- Mainly due to the non-linear I_D - V_G characteristic

•
$$G_m = \frac{\partial I_D}{\partial V_{GS}}$$
, $G_{m2} = \frac{\partial^2 I_D}{\partial V_{GS}^2}$, $G_{m3} = \frac{\partial^3 I_D}{\partial V_{GS}^3}$

•
$$P_{1dB} = \left| \frac{G_m}{13.8G_{m3}R_S} \right|$$

• $P_{IP3} = \left| \frac{2G_m}{3G_{m3}R_S} \right|$

$$\bullet P_{IP3} = \left| \frac{2G_m}{3G_{m3}R_S} \right|$$

•
$$V_{IP3} = \sqrt{\frac{24G_m}{G_{m3}}}$$

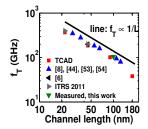
- Contradicting results in literature
 - Non-linearities behavior w. length scaling and inversion level

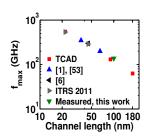
- Non-linearities expressed through
 - Harmonics
 - Intermodulation (two-tone test)
- Mainly due to the non-linear I_D - V_G characteristic

•
$$G_m = \frac{\partial I_D}{\partial V_{GS}}, G_{m2} = \frac{\partial^2 I_D}{\partial V_{GS}^2}, G_{m3} = \frac{\partial^3 I_D}{\partial V_{GS}^3}$$

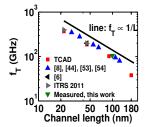
•
$$P_{1dB} = \left| \frac{G_m}{13.8G_{m3}R_S} \right|$$

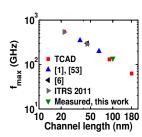
• $P_{IP3} = \left| \frac{2G_m}{3G_{m3}R_S} \right|$

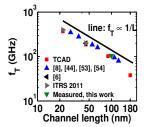

$$\bullet P_{IP3} = \left| \frac{2G_m}{3G_{m3}R_S} \right|$$

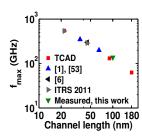

•
$$V_{IP3} = \sqrt{\frac{24G_m}{G_{m3}}}$$

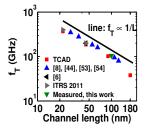
- Contradicting results in literature
 - Non-linearities behavior w. length scaling and inversion level

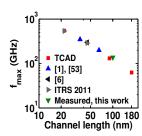


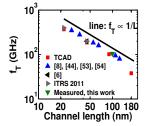

FoM presented versus

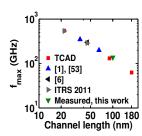

- FoM presented versus
 - Measured data for the 90 nm case
 - TCAD data for technology nodes of L=180, 90, 45, 22 nm
 - Verified w. EKV3
 - Validated w. measurements from other groups and ITRS 2011

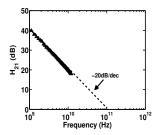


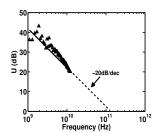

- FoM presented versus
 - Measured data for the 90 nm case
 - TCAD data for technology nodes of L=180, 90, 45, 22 nm
 - Verified w. EKV3
 - Validated w. measurements from other groups and ITRS 2011

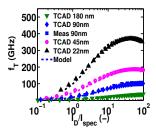


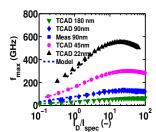

- FoM presented versus
 - Measured data for the 90 nm case
 - TCAD data for technology nodes of L=180, 90, 45, 22 nm
 - Verified w. EKV3
 - Validated w. measurements from other groups and ITRS 2011

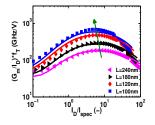


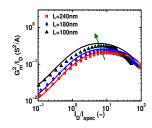

- FoM presented versus
 - Measured data for the 90 nm case
 - TCAD data for technology nodes of L=180, 90, 45, 22 nm
 - Verified w. EKV3
 - Validated w. measurements from other groups and ITRS 2011

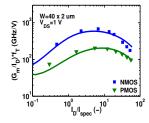




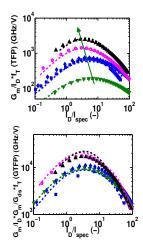

• Measured (
$$L = 100 nm$$
, $W = 10 \times 2 um$, $V_{DS} = 1 V$)

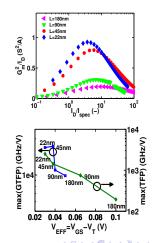


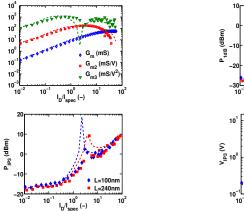

• TCAD and measured ($W = 10 \times 2um$, $V_{DS} = 0.9V$)

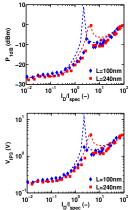


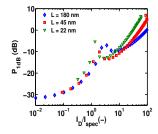
• Measured ($W = 40 \times 2um$, $V_{DS} = 1V$)

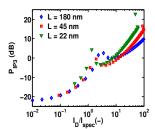







TCAD and measured ($W = 10 \times 2um$, $V_{DS} = 0.9 V$)


• Measured ($W = 40 \times 2um, V_{DS} = 1V, @f = 1.1 GHz$)



Antonopoulos et al., RFIC Symp., 2013

• TCAD ($W = 10x2um, V_{DS} = 0.9V$)

- - Optimum value achieved in M.I.

- Trends in FoMs investigated vs.
 - Bias, L, and technology

- Optimum LNA performance studied via $(G_m/I_D) \cdot f_T$ and G_m^2/I_D
 - Experience the same behavior

- Trends in FoMs investigated vs.
 - Bias, L, and technology
- Individual FoM show a shift to lower inversion level w. length scaling
- Optimum LNA performance studied via $(G_m/I_D) \cdot f_T$ and G_m^2/I_D
 - Experience the same behavior

- Trends in FoMs investigated vs.
 - Bias, L, and technology
- Individual FoM show a shift to lower inversion level w. length scaling
- Combined FoM show the same shift
- Optimum LNA performance studied via $(G_m/I_D) \cdot f_T$ and G_m^2/I_D
 - Experience the same behavior

- Trends in FoMs investigated vs.
 - Bias, L, and technology
- Individual FoM show a shift to lower inversion level w. length scaling
- Ombined FoM show the same shift
- Optimum LNA performance studied via $(G_m/I_D) \cdot f_T$ and G_m^2/I_D
 - Experience the same behavior
 - Optimum value achieved in M.I.

Contribution

 Optimum RF performance shifted toward around-threshold operation as planar bulk CMOS scales down to 22 nm

- Trends in FoMs investigated vs.
 - Bias, L, and technology
- Individual FoM show a shift to lower inversion level w. length scaling
- Combined FoM show the same shift
- Optimum LNA performance studied via $(G_m/I_D) \cdot f_T$ and G_m^2/I_D
 - Experience the same behavior
 - Optimum value achieved in M.I.

Contribution

 Optimum RF performance shifted toward around-threshold operation as planar bulk CMOS scales down to 22 nm

- Random process
 - Even if the past values are known, the instantaneous value cannot be predicted
- Power spectral density
 - Characterizes the average power the signal carries
- Noise in a resistor: Representations
 - Norton equivalent: $S_{V_n}(f) = \overline{V_n^2} = 4kTR_1(V^2/Hz)$
 - The venin equivalent: $S_{I_n}(f) = \overline{I_n^2} = \overline{V_n^2}/R_1^2 = 4kT/R_1(A^2/Hz)$
- - Flicker (1/f) noise

- Random process
 - Even if the past values are known, the instantaneous value cannot be predicted
- Power spectral density
 - Characterizes the average power the signal carries
- Noise in a resistor: Representations
 - Norton equivalent: $S_{V_n}(f) = \overline{V_n^2} = 4kTR_1(V^2/Hz)$
 - The venin equivalent: $S_{I_n}(f) = \overline{I_n^2} = \overline{V_n^2}/R_1^2 = 4kT/R_1(A^2/Hz)$
- - Flicker (1/f) noise

Random process

- Even if the past values are known, the instantaneous value cannot be predicted
- Power spectral density
 - Characterizes the average power the signal carries
- Noise in a resistor: Representations
 - Norton equivalent: $S_{V_n}(f) = \overline{V_n^2} = 4kTR_1(V^2/Hz)$
 - The venin equivalent: $S_{I_n}(f) = \overline{I_n^2} = \overline{V_n^2}/R_1^2 = 4kT/R_1(A^2/Hz)$
- MOS Transistors
 - Flicker (1/f) noise
 - Thermal noise
 - Induced gate noise

Noise in Semiconductors

- Random process
 - Even if the past values are known, the instantaneous value cannot be predicted
- Power spectral density
 - Characterizes the average power the signal carries
- Noise in a resistor: Representations
 - Norton equivalent: $S_{V_n}(f) = \overline{V_n^2} = 4kTR_1(V^2/Hz)$
 - The venin equivalent: $S_{I_n}(f) = \overline{I_n^2} = \overline{V_n^2}/R_1^2 = 4kT/R_1(A^2/Hz)$
- MOS Transistors
 - Flicker (1/f) noise
 - Thermal noise
 - Induced gate noise

Hot research topic

- Many groups (Birbas & Triantis, Enz & Roy, Schroter & Sakalas, Smit & Scholten, Deen & Chen,...)
- Compact models (BSIM, PSP, EKV)
 - Noise description as a function of geometry, bias, scaling
 - Controversies in literature
- Discrepancies
 - Excess noise in short devices and short channel effects (SCE)
 - Noise parameters
- Necessity to translate noise behavior of the device to circuit design
- A lot of issues remain unclear and need to be clarified

Thermal Noise in MOSTs: A Short History

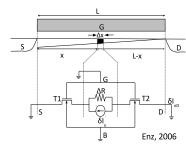
- Hot research topic
 - Many groups (Birbas & Triantis, Enz & Roy, Schroter & Sakalas, Smit & Scholten, Deen & Chen,...)
- Compact models (BSIM, PSP, EKV)
 - Noise description as a function of geometry, bias, scaling
 - Controversies in literature
- Discrepancies
 - Excess noise in short devices and short channel effects (SCE)
 - Noise parameters
- Necessity to translate noise behavior of the device to circuit design
- A lot of issues remain unclear and need to be clarified

Thermal Noise in MOSTs: A Short History

- Hot research topic
 - Many groups (Birbas & Triantis, Enz & Roy, Schroter & Sakalas, Smit & Scholten, Deen & Chen,...)
- Compact models (BSIM, PSP, EKV)
 - Noise description as a function of geometry, bias, scaling
 - Controversies in literature
- Discrepancies
 - Excess noise in short devices and short channel effects (SCE)
 - Noise parameters
- Necessity to translate noise behavior of the device to circuit design

Thermal Noise in MOSTs: A Short History

- Hot research topic
 - Many groups (Birbas & Triantis, Enz & Roy, Schroter & Sakalas, Smit & Scholten, Deen & Chen,...)
- Compact models (BSIM, PSP, EKV)
 - Noise description as a function of geometry, bias, scaling
 - Controversies in literature
- Discrepancies
 - Excess noise in short devices and short channel effects (SCE)
 - Noise parameters
- Necessity to translate noise behavior of the device to circuit design

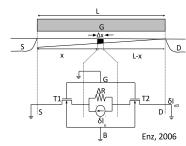

- Hot research topic
 - Many groups (Birbas & Triantis, Enz & Roy, Schroter & Sakalas, Smit & Scholten, Deen & Chen,...)
- Compact models (BSIM, PSP, EKV)
 - Noise description as a function of geometry, bias, scaling
 - Controversies in literature
- Discrepancies
 - Excess noise in short devices and short channel effects (SCE)
 - Noise parameters
- Necessity to translate noise behavior of the device to circuit design
- A lot of issues remain unclear and need to be clarified

Objective

Thermal Noise in MOSTs: The EKV3 Model

- Thermal noise due to local random fluctuations of the carrier velocity
 - Transferred to the device terminals
 - Modeled as a random current added to the DC local current

$$S_{\Delta ln_D^2}(\omega) = \int_0^L G_{ch}^2 \Delta R^2 \frac{S_{\delta l_n^2}(\omega, x)}{\Delta x} dx$$

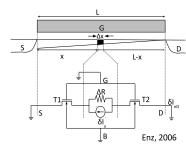

Objective

Thermal Noise in MOSTs: The EKV3 Model

- Thermal noise due to local random fluctuations of the carrier velocity
 - Transferred to the device terminals
 - Modeled as a random current added to the DC local current
- Modeling approach
 - Local noisy source
 - x and x+∆x from Source
 - L-x and L-(x+∆x) from Drain
 - Noisy current source in parallel with ΔR
 - Transistor is split into T1 and T2
 - Channel conductance: $\frac{1}{G_{ch}} = \frac{1}{G_1} + \frac{1}{G_2}$
 - Drain fluctuation due to local noise source: $\delta I_{nD} = G_{ch} \Delta R \delta I_n$
 - PSD of drain current due to all noisy sources:

$$S_{\Delta ln_D^2}(\omega) = \int_0^L G_{ch}^2 \Delta R^2 \frac{S_{\delta l_D^2}(\omega, x)}{\Delta x} dx$$

Modeling approach applicable to frequencies well beyond f


Objective

Thermal Noise in MOSTs: The EKV3 Model

- Thermal noise due to local random fluctuations of the carrier velocity
 - Transferred to the device terminals
 - Modeled as a random current added to the DC local current
- Modeling approach
 - Local noisy source
 - x and x+∆x from Source
 - L-x and L-(x+Δx) from Drain
 - Noisy current source in parallel with ΔR
 - Transistor is split into T1 and T2
 - Channel conductance: $\frac{1}{G_{ch}} = \frac{1}{G_1} + \frac{1}{G_2}$
 - Drain fluctuation due to local noise source: $\delta I_{nD} = G_{ch} \Delta R \delta I_n$
 - PSD of drain current due to all noisy sources:

$$S_{\Delta ln_D^2}(\omega) = \int_0^L G_{ch}^2 \Delta R^2 \frac{S_{\delta l_D^2}(\omega, x)}{\Delta x} dx$$

Modeling approach applicable to frequencies well beyond f_T

Thermal Noise of Long Channel Devices

- Constant carrier mobility, μ
- PSD of drain noise current

•
$$I_D = \mu W(-Q_i) \frac{dV}{dx}$$

•
$$G_{ch} = \frac{dI_D}{dV} = \mu(-Q_i)\frac{W}{L}$$

• Due to local noise source
$$\delta I_n$$
: $S_{\delta l_{nD}^2}(\omega, x) = G_{ch}^2(x) \Delta R^2(x) S_{\delta l_n^2}(\omega, x)$

• Due to all noise sources:
$$S_{\Delta l_{nD}^2}(\omega) = \int_0^L (\frac{\Delta x}{L})^2 \frac{s_{\delta l_{n}^2(\omega, x)}}{\Delta x} dx = \frac{1}{L^2} \int_0^L \Delta x S_{\delta l_{n}^2}(\omega, x) dx$$

• Introduction of noise conductance G_{nD}

•
$$G_{nD} = \mu \frac{W}{I^2} \int_0^L (-Q_i) dx = \frac{\mu}{I^2} |Q_I|$$

Thermal Noise of Long Channel Devices

- Constant carrier mobility, μ
- PSD of drain noise current

•
$$I_D = \mu W(-Q_i) \frac{dV}{dx}$$

•
$$G_{ch} = \frac{dI_D}{dV} = \mu(-Q_i)\frac{W}{L}$$

• Due to local noise source
$$\delta I_n$$
: $S_{\delta l_{nD}^2}(\omega, x) = G_{ch}^2(x) \Delta R^2(x) S_{\delta l_n^2}(\omega, x)$

• Due to all noise sources:
$$S_{\Delta I_{nD}^2}(\omega) = \int_0^L (\frac{\Delta x}{L})^2 \frac{S_{\delta I_{nD}^2(\omega,x)}}{\Delta x} dx = \frac{1}{L^2} \int_0^L \Delta x S_{\delta I_{n}^2}(\omega,x) dx$$

•
$$G_{nD} = \mu \frac{W}{I^2} \int_0^L (-Q_i) dx = \frac{\mu}{I^2} |Q_I|$$

Thermal Noise of Long Channel Devices

- Constant carrier mobility, μ
- PSD of drain noise current

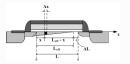
•
$$I_D = \mu W(-Q_i) \frac{dV}{dx}$$

•
$$G_{ch} = \frac{dI_D}{dV} = \mu(-Q_i)\frac{W}{L}$$

• Due to local noise source
$$\delta I_n$$
: $S_{\delta l_{nD}^2}(\omega, x) = G_{ch}^2(x) \Delta R^2(x) S_{\delta l_n^2}(\omega, x)$

• Due to all noise sources:
$$S_{\Delta I_{nD}^2}(\omega) = \int_0^L (\frac{\Delta x}{L})^2 \frac{S_{\delta I_{n}^2(\omega, x)}}{\Delta x} dx = \frac{1}{L^2} \int_0^L \Delta x S_{\delta I_{n}^2}(\omega, x) dx$$

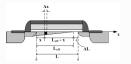
Introduction of noise conductance G_{nD}


•
$$S_{\Delta I^2} = 4kTG_{nD}$$

•
$$G_{nD} = \mu \frac{W}{I^2} \int_0^L (-Q_i) dx = \frac{\mu}{I^2} |Q_I|$$

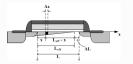
Velocity Saturation (VS) and Carrier Heating (CH

- Electrons and holes have a characteristic E_c and u_{sa}
- When E_X becomes comparable to E_C then u_{drift} starts to saturate
- High lateral electric field
 - Carriers gain higher energy
 - Random collisions w. latt
 - Carrier temperature increases w. electric field
- VS and CH, interdependent phenomen:
- EKV3 accounts for both
 - Critical field parameter
 - $\lambda_c = \frac{2U_T}{L_{-\alpha}E_C}$
 - The higher the λ_C , the stronger the SCE


- In S.I. as V_{DS} increases the channel pinches off
- Channel is split into two regions
 - Non-saturated region (L_{eff})
 - VS region, ΔL
- Carriers in VS region
 - Maximum velocity
 - Noise voltage fluctuations do not propagate to drain
- Only the active region contributes to channel thermal noise

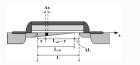
Velocity Saturation (VS) and Carrier Heating (CH)

- Electrons and holes have a characteristic E_c and u_{sa}
- When E_X becomes comparable to E_C then u_{drift} starts to saturate
- High lateral electric field
 - Carriers gain higher energy
 - Random collisions w.
 - Carrier temperature increases w. electric field
- VS and CH, interdependent phenomen
- EKV3 accounts for both
 - Critical field parameter
 - $\lambda_c = \frac{2U_T}{L_{-\alpha}E_C}$
 - The higher the λ_c , the stronger the SCF


- In S.I. as V_{DS} increases the channel pinches off
- Channel is split into two regions
 - Non-saturated region (L_{eff})
 - VS region, ΔL
- Carriers in VS region
 - Maximum velocity
 - Noise voltage fluctuations do not propagate to drain
- Only the active region contributes to channel thermal noise

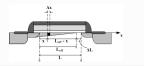
Velocity Saturation (VS) and Carrier Heating (CH)

- Electrons and holes have a characteristic E_c and u_{sat}
- When E_x becomes comparable to E_c then u_{drift} starts to saturate
- High lateral electric field
 - Carriers gain higher energy
 - Random collisions w. la
 - Carrier temperature increases w. electric field
- VS and CH, interdependent phenomen:
- EKV3 accounts for both
 - Critical field parameter
 - $\lambda_c = \frac{2U_T}{L_{-\alpha}E_C}$
 - The higher the λ_c, the stronger the SCI


- In S.I. as V_{DS} increases the channel pinches off
- Channel is split into two regions
 - Non-saturated region (L_{eff})
 - VS region, ΔL
- Carriers in VS region
 - Maximum velocity
 - Noise voltage fluctuations do not propagate to drain
- Only the active region contributes to channel thermal noise

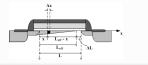
Velocity Saturation (VS) and Carrier Heating (CH)

- Electrons and holes have a characteristic E_c and u_{sat}
- When E_x becomes comparable to E_c then u_{drift} starts to saturate
- High lateral electric field
 - Carriers gain higher energy
 - Random collisions w. l.
 - Carrier temperature increases w. electric field
- VS and CH, interdependent phenomen:
- EKV3 accounts for both
 - Critical field parameter
 - $\lambda_c = \frac{2U_T}{L_{-\alpha}E_C}$
 - The higher the λ the stronger the SCF


- In S.I. as V_{DS} increases the channel pinches off
- Channel is split into two regions
 - Non-saturated region (L_{eff})
 - VS region, ΔL
- Carriers in VS region
 - Maximum velocity
 - Noise voltage fluctuations do not propagate to drain
- Only the active region contributes to channel thermal noise

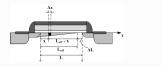
Velocity Saturation (VS) and Carrier Heating (CH)

- Electrons and holes have a characteristic E_c and u_{sat}
- When E_x becomes comparable to E_c then u_{drift} starts to saturate
- High lateral electric field
 - · Carriers gain higher energy
 - Random collisions w. lattice
 - Carrier temperature increases w. electric field
 - VS and CH, interdependent phenomen
- EKV3 accounts for both
 - Critical field parameter
 - $\lambda_c = \frac{2U_T}{L_{-\alpha}E_C}$
 - The higher the λ the stronger the SCF


- In S.I. as V_{DS} increases the channel pinches off
- Channel is split into two regions
 - Non-saturated region (L_{eff})
 - VS region, ΔL
- Carriers in VS region
 - Maximum velocity
 - Noise voltage fluctuations do not propagate to drain
- Only the active region contributes to channel thermal

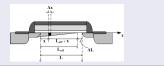
Velocity Saturation (VS) and Carrier Heating (CH)

- Electrons and holes have a characteristic E_c and u_{sat}
- When E_x becomes comparable to E_c then u_{drift} starts to saturate
- High lateral electric field
 - · Carriers gain higher energy
 - Random collisions w. lattice
 - Carrier temperature increases w. electric field
- VS and CH, interdependent phenomena
- EKV3 accounts for both
 - Critical field parameter
 - $\lambda_c = \frac{2U_T}{L_{-\alpha}E_C}$
 - The higher the λ the stronger the SCF


- In S.I. as V_{DS} increases the channel pinches off
- Channel is split into two regions
 - Non-saturated region (L_{eff})
 - VS region, ΔL
- Carriers in VS region
 - Maximum velocity
 - Noise voltage fluctuations do not propagate to drain
- Only the active region contributes to channel thermal noise

Velocity Saturation (VS) and Carrier Heating (CH)

- Electrons and holes have a characteristic E_c and u_{sat}
- When E_x becomes comparable to E_c then u_{drift} starts to saturate
- High lateral electric field
 - · Carriers gain higher energy
 - Random collisions w. lattice
 - Carrier temperature increases w. electric field
- VS and CH, interdependent phenomena
- EKV3 accounts for both
 - Critical field parameter
 - $\lambda_c = \frac{2U_T}{U_T + E_T}$
 - The higher the λ_c , the stronger the SCE


- In S.I. as V_{DS} increases the channel pinches off
- Channel is split into two regions
 - Non-saturated region (L_{eff})
 - VS region, ΔL
- Carriers in VS region
 - Maximum velocity
 - Noise voltage fluctuations do not propagate to drain
- Only the active region contributes to channel thermal noise

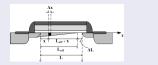
Velocity Saturation (VS) and Carrier Heating (CH)

- Electrons and holes have a characteristic E_c and u_{sat}
- When E_X becomes comparable to E_c then u_{drift} starts to saturate
- High lateral electric field
 - · Carriers gain higher energy
 - Random collisions w. lattice
 - Carrier temperature increases w. electric field
- VS and CH, interdependent phenomena
- EKV3 accounts for both
 - Critical field parameter
 - $\lambda_c = \frac{2U_T}{1-\frac{1}{2}}$
 - The higher the λ_c , the stronger the SCE

- In S.I. as V_{DS} increases the channel pinches off
- Channel is split into two regions
 - Non-saturated region (L_{eff})
 - VS region, AL
- Carriers in VS region
 - Maximum velocity
 - Noise voltage fluctuations do not propagate to drain
- Only the active region contributes to channel therma

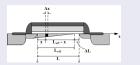
Velocity Saturation (VS) and Carrier Heating (CH)

- Electrons and holes have a characteristic E_c and u_{sat}
- When E_x becomes comparable to E_c then u_{drift} starts to saturate
- High lateral electric field
 - · Carriers gain higher energy
 - Random collisions w. lattice
 - Carrier temperature increases w. electric field
 - VS and CH, interdependent phenomena
- EKV3 accounts for both
 - Critical field parameter
 - $\lambda_c = \frac{2U_T}{L_{\alpha}F_c}$
 - The higher the λ_C, the stronger the SCE


- In S.I. as V_{DS} increases the channel pinches off
- Channel is split into two regions
 - Non-saturated region (L_{eff})
 - \vee vs region, ΔL
- Carriers in VS region
 - Maximum velocity
 - Noise voltage fluctuations do not propagate to drain
- Only the active region contributes to channel therma

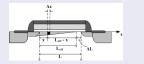
Velocity Saturation (VS) and Carrier Heating (CH)

- Electrons and holes have a characteristic E_C and u_{sat}
- When E_x becomes comparable to E_c then u_{drift} starts to saturate
- High lateral electric field
 - · Carriers gain higher energy
 - Random collisions w. lattice
 - Carrier temperature increases w. electric field
- VS and CH, interdependent phenomena
- EKV3 accounts for both
 - Critical field parameter
 - $\lambda_c = \frac{2U_T}{U_T}$
 - The higher the λ_c, the stronger the SCE


- In S.I. as V_{DS} increases the channel pinches off
- Channel is split into two regions
 - Non-saturated region (L_{eff})
 - VS region, ΔL
- Carriers in VS region
 - Maximum velocity
 - Noise voltage fluctuations do not propagate to drain
- Only the active region contributes to channel therma

Velocity Saturation (VS) and Carrier Heating (CH)

- Electrons and holes have a characteristic E_c and u_{sat}
- When E_x becomes comparable to E_c then u_{drift} starts to saturate
- High lateral electric field
 - · Carriers gain higher energy
 - Random collisions w. lattice
 - Carrier temperature increases w. electric field
- VS and CH, interdependent phenomena
- EKV3 accounts for both
 - Critical field parameter
 - $\lambda_c = \frac{2U_T}{L_{-\alpha}E_C}$
 - The higher the λ_c, the stronger the SCE


- In S.I. as V_{DS} increases the channel pinches off
- Channel is split into two regions
 - Non-saturated region (L_{eff})
 - VS region, ΔL
- Carriers in VS region
 - Maximum velocity
 - Noise voltage fluctuations do not propagate to drain
- Only the active region contributes to channel therma

Velocity Saturation (VS) and Carrier Heating (CH)

- Electrons and holes have a characteristic E_C and u_{sat}
- When E_X becomes comparable to E_c then u_{drift} starts to saturate
- High lateral electric field
 - · Carriers gain higher energy
 - Random collisions w. lattice
 - Carrier temperature increases w. electric field
- VS and CH, interdependent phenomena
- EKV3 accounts for both
 - Critical field parameter
 - $\lambda_c = \frac{2U_T}{L_{-\alpha}E_C}$
 - The higher the λ_c , the stronger the SCE

- In S.I. as V_{DS} increases the channel pinches off
- Channel is split into two regions
 - Non-saturated region (L_{eff})
 - VS region, ΔL
- Carriers in VS region
 - Maximum velocity
 - Noise voltage fluctuations do not propagate to drain
- Only the active region contributes to channel thermal noise

- Incorporating SCE in PSD of drain noise current (Roy and Enz, TED 2005)
 - S.I. assumption (SCE dominant)
 - Two transistor approach
 - Effective mobility μ_{eff} varies w. E_x
- Thermal noise conductance

•
$$G_{nD} = M \frac{W}{L_{\text{aff}}^2} \int_0^{L_{\text{eff}}} \mu_z \frac{T_C}{T_L} (-Qi(x)) dx$$

$$M = \frac{1}{(1 - \frac{V_{Deff} - V_{S}}{2I_{m} F_{S}})^{2}}$$

• Analytical expression

- Incorporating SCE in PSD of drain noise current (Roy and Enz, TED 2005)
 - S.I. assumption (SCE dominant)
 - Two transistor approach
 - Effective mobility μ_{eff} varies w. E_x
- Thermal noise conductance

•
$$G_{nD} = M \frac{W}{L_{eff}^2} \int_0^{L_{eff}} \mu_z \frac{T_C}{T_L} (-Qi(x)) dx$$

$$V_{Deff} = \begin{cases} V_D, & \text{for } V_D < V_{Dsat} \\ V_{Dsat}, & \text{for } V_D \ge V_{Dsat} \end{cases}$$

•
$$M = \frac{1}{(1 - \frac{V_{Deff} - V_{S}}{2L_{eff} E_{C}})^{2}}$$

Analytical expression

Thermal Noise Parameters

- Thermal noise parameter: $\delta = \frac{G_{nD}}{G_{+}}$
 - G_{nD} and G_{ds0} calculated at different operating points
 - Less relevant for circuit design
- Thermal noise excess factor: $\gamma = \frac{G_{nD}}{G}$
 - G_{nD} and G_m calculated at the same operating points
 - Characterizes noise performance of transconductors
 - Used in noise calculation of cascode LNA: $F_{min} = 1 + 2\gamma \frac{\omega}{\omega +} \sqrt{\frac{\beta_G}{\gamma} (1 c)^2}$
 - The smaller γ , the better the noise performance
- Importance of γ underestimated by scientific community

Thermal Noise Parameters

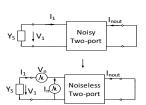
- Thermal noise parameter: $\delta = \frac{G_{nD}}{G_{d-n}}$
 - G_{nD} and G_{ds0} calculated at different operating points
 - Less relevant for circuit design
- Thermal noise excess factor: $\gamma = \frac{G_{nD}}{G}$
 - G_{nD} and G_m calculated at the same operating points
 - Characterizes noise performance of transconductors
 - Used in noise calculation of cascode LNA: $F_{min} = 1 + 2\gamma \frac{\omega}{\omega \tau} \sqrt{\frac{\beta_G}{\gamma}} (1 c)^2$
 - The smaller γ, the better the noise performance
 - Dramatically increases in linear operation

Thermal Noise Parameters

- Thermal noise parameter: $\delta = \frac{G_{nD}}{G_{ds0}}$
 - G_{nD} and G_{ds0} calculated at different operating points
 - Less relevant for circuit design
- Thermal noise excess factor: $\gamma = \frac{G_{nD}}{G_m}$
 - G_{nD} and G_m calculated at the same operating points
 - Characterizes noise performance of transconductors
 - Used in noise calculation of cascode LNA: $F_{min} = 1 + 2\gamma \frac{\omega}{\omega_T} \sqrt{\frac{\beta_G}{\gamma} (1 c)^2}$
 - The smaller γ , the better the noise performance
 - Dramatically increases in linear operation
- Importance of γ underestimated by scientific community
 - Not validated w. measurements
 - δ instead of γ

Noise in Two-Port

- Noise generated by any two-port device
 - Noiseless network w. two partially correlated noise sources
 - 4 noise parameters


$$F = F_{min} + \frac{R_n}{G_s} |Y_s - Y_{opt}|^2$$

- Minimum noise figure, F_{min}
- Noise resistance, R_n
- Optimum source reflection coefficient, Γ_{opt}

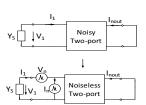
•
$$Y_{opt} = Y_0 \frac{1 - \Gamma_{opt}}{1 + \Gamma_{opt}}$$

Noise matching when

•
$$G_S = G_{opt}$$
 and $B_S = B_{opt}$

Noise in Two-Port

- Noise generated by any two-port device
 - Noiseless network w. two partially correlated noise sources
 - 4 noise parameters


•
$$F = F_{min} + \frac{R_n}{G_s} |Y_s - Y_{opt}|^2$$

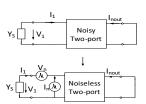
- Minimum noise figure, F_{min}
- Noise resistance, R_n
- Optimum source reflection coefficient, Γ_{opt}

•
$$Y_{opt} = Y_0 \frac{1 - \Gamma_{opt}}{1 + \Gamma_{opt}}$$

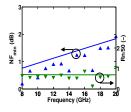
•
$$G_S = G_{opt}$$
 and $B_S = B_{opt}$

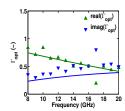
Noise generated by any two-port device

- Noiseless network w. two partially correlated noise sources
- 4 noise parameters

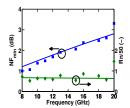

•
$$F = F_{min} + \frac{R_n}{G_s} |Y_s - Y_{opt}|^2$$

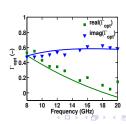
- Minimum noise figure, F_{min}
- Noise resistance, R_n
- Optimum source reflection coefficient, Γ_{opt}

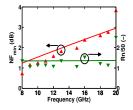

•
$$Y_{opt} = Y_0 \frac{1 - \Gamma_{opt}}{1 + \Gamma_{opt}}$$

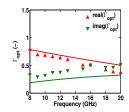


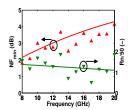
•
$$G_S = G_{opt}$$
 and $B_S = B_{opt}$

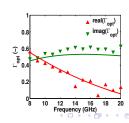


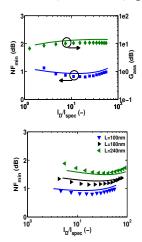

• NMOS $(L = 100 nm, W = 40 \times 2 um, V_{GS} = 0.65 V, V_{DS} = 1.2 V)$

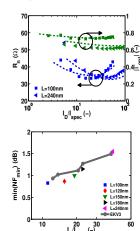




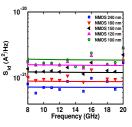


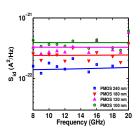

• PMOS (L = 100nm, $W = 40 \times 2$ um, $V_{GS} = -0.65 V$, $V_{DS} = -1.2 V$)

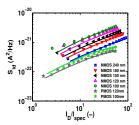

• PMOS $(L = 240nm, W = 40 \times 2um, V_{GS} = -0.65 V, V_{DS} = -1.2 V)$



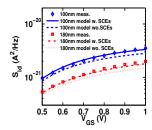
HF Noise Parameters vs. Bias

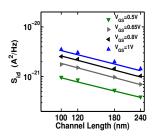

• NMOS ($W = 40 \times 2um$, $V_{DS} = 1.2V$, f = 10 GHz)





• NMOS and PMOS($W = 40 \times 2um, |V_{DS}| = 1.2V$)

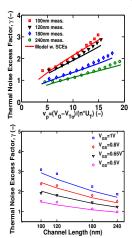


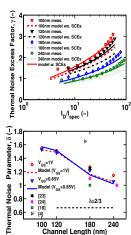


Antonopoulos et al., IJNM 2014

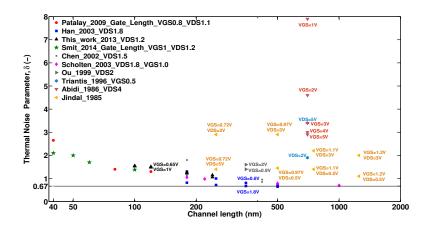
PSD of Drain Noise Current

• NMOS ($W = 40x2um, V_{DS} = 1.2V, f = 10GHz$)

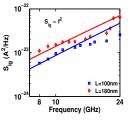


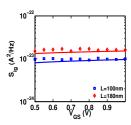


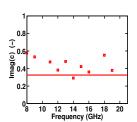
Antonopoulos et al., TED 2013


Design Parameters

• NMOS ($W = 40x2um, V_{DS} = 1.2V, f = 10GHz$)




Thermal Noise Parameter, δ



Gate Current Noise

- NMOS ($W = 40 \times 2um, V_{DS} = 1.2V$)
- Correlation factor: $c = \frac{S_{igid^*}}{\sqrt{S_{ig}S_{id}}}$

Antonopoulos et al., TED 2013

- Detailed investigation of RF noise in MOSFETs in the context of circuit design
- - VS, CH, CLM
- - Vicinity of S.I. to M.I.

- Detailed investigation of RF noise in MOSFETs in the context of circuit design
 - Frequency, L, and bias
- Thermal noise excess factor measurements for the first time
- SCE on thermal noise and γ
 - VS, CH, CLM
- Optimum noise performance
 - Vicinity of S.I. to M.I

Contribution

- Thermal noise excess factor measurement and modeling for the first time
- Minimum noise expected to shift to even lower inversion levels with more advanced technologies

- Detailed investigation of RF noise in MOSFETs in the context of circuit design
 - Frequency, L, and bias
- Thermal noise excess factor measurements for the first time
- SCE on thermal noise and γ
 - VS, CH, CLM
- Optimum noise performance
 - Vicinity of S.I. to M.I.

Contribution

- Thermal noise excess factor measurement and modeling for the first time
- Minimum noise expected to shift to even lower inversion levels with more advanced technologies

- Detailed investigation of RF noise in MOSFETs in the context of circuit design
 - Frequency, L, and bias
- Thermal noise excess factor measurements for the first time
- SCE on thermal noise and γ
 - VS, CH, CLM

- Detailed investigation of RF noise in MOSFETs in the context of circuit design
 - Frequency, L, and bias
- Thermal noise excess factor measurements for the first time
- SCE on thermal noise and γ
 - VS, CH, CLM
- Optimum noise performance
 - Vicinity of S.I. to M.I.

- Detailed investigation of RF noise in MOSFETs in the context of circuit design
 - Frequency, L, and bias
- Thermal noise excess factor measurements for the first time
- SCE on thermal noise and γ
 - VS, CH, CLM
- Optimum noise performance
 - Vicinity of S.I. to M.I.

Contribution

- Thermal noise excess factor measurement and modeling for the first time
- Minimum noise expected to shift to even lower inversion levels with more advanced technologies

SNIM technique

- Use minimum L to achieve high f_T
- Calculate C_{gs} and W from $Z_{opt} = Real(Z_S)$

•
$$G_{opt} = \alpha \omega C_{gs} \sqrt{\frac{\delta}{5\gamma}} (1 - |c|^2)$$

• Calculate L_S from a given power constraint from $Real(Z_{in}) = Real(Z_S)$

•
$$Real(Z_{in}) = \frac{g_m L_S}{C_{gs}}$$

•
$$Imag(Z_{in}) = \omega(L_G + L_S) - \frac{1}{\omega C_{gs}} - \frac{1}{\omega C_{pad}}$$

- Optimum bias voltage by plotting f_T vs. V_{OD}
 - $V_{GS} = 0.65 V$

- SNIM technique
 - Use minimum L to achieve high f_T
 - Calculate C_{gs} and W from $Z_{opt} = Real(Z_S)$

•
$$G_{opt} = \alpha \omega C_{gs} \sqrt{\frac{\delta}{5\gamma} (1 - |c|^2)}$$

• Calculate L_S from a given power constraint from $Real(Z_{in}) = Real(Z_S)$

•
$$Real(Z_{in}) = \frac{g_m L_S}{C_{gs}}$$

•
$$Imag(Z_{in}) = \omega(L_G + L_S) - \frac{1}{\omega C_{gs}} - \frac{1}{\omega C_{pad}}$$

- Optimum bias voltage by plotting f_T vs. V_{OD}
 - $V_{GS} = 0.65 V$

- SNIM technique
 - Use minimum L to achieve high f_T
 - Calculate C_{gs} and W from $Z_{opt} = Real(Z_S)$

•
$$G_{opt} = \alpha \omega C_{gs} \sqrt{\frac{\delta}{5\gamma} (1 - |c|^2)}$$

Calculate L_S from a given power constraint from $Real(Z_{in}) = Real(Z_S)$

•
$$Real(Z_{in}) = \frac{g_m L_S}{C_{gs}}$$

•
$$Imag(Z_{in}) = \omega(L_G + L_S) - \frac{1}{\omega C_{gs}} - \frac{1}{\omega C_{pad}}$$

- Optimum bias voltage by plotting f_T vs. V_{OD}
 - $V_{GS} = 0.65 V$
- Output inductance resonates with output capacitance at 30 GHz

- SNIM technique
 - Use minimum L to achieve high f_T
 - Calculate C_{gs} and W from $Z_{opt} = Real(Z_S)$

•
$$G_{opt} = \alpha \omega C_{gs} \sqrt{\frac{\delta}{5\gamma} (1 - |c|^2)}$$

Calculate L_S from a given power constraint from $Real(Z_{in}) = Real(Z_S)$

• Real(
$$Z_{in}$$
) = $\frac{g_m L_S}{C_{gs}}$

•
$$Imag(Z_{in}) = \omega(L_G + L_S) - \frac{1}{\omega C_{gs}} - \frac{1}{\omega C_{pad}}$$

- Optimum bias voltage by plotting f_T vs. V_{OD}
 - $V_{GS} = 0.65 V$
- Output inductance resonates with output capacitance at 30 GHz

- SNIM technique
 - Use minimum L to achieve high f_T
 - Calculate C_{gs} and W from $Z_{opt} = Real(Z_S)$

•
$$G_{opt} = \alpha \omega C_{gs} \sqrt{\frac{\delta}{5\gamma} (1 - |c|^2)}$$

• Calculate L_S from a given power constraint from $Real(Z_{in}) = Real(Z_S)$

• Real(
$$Z_{in}$$
) = $\frac{g_m L_S}{C_{gs}}$

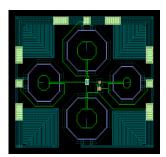
•
$$Imag(Z_{in}) = \omega(L_G + L_S) - \frac{1}{\omega C_{gs}} - \frac{1}{\omega C_{pad}}$$

- Optimum bias voltage by plotting f_T vs. V_{OD}
 - $V_{GS} = 0.65 V$
- Output inductance resonates with output capacitance at 30 GHz

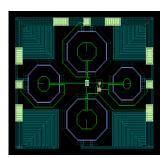
- SNIM technique
 - Use minimum L to achieve high f_T
 - Calculate C_{gs} and W from $Z_{opt} = Real(Z_S)$

•
$$G_{opt} = \alpha \omega C_{gs} \sqrt{\frac{\delta}{5\gamma} (1 - |c|^2)}$$

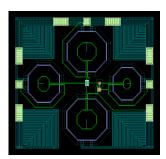
• Calculate L_S from a given power constraint from $Real(Z_{in}) = Real(Z_S)$

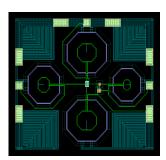

•
$$Real(Z_{in}) = \frac{g_m L_S}{C_{gs}}$$

•
$$Imag(Z_{in}) = \omega(L_G + L_S) - \frac{1}{\omega C_{gs}} - \frac{1}{\omega C_{pad}}$$

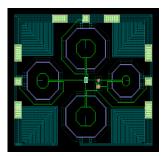

- Optimum bias voltage by plotting f_T vs. V_{OD}
 - $V_{CS} = 0.65 V$
- Output inductance resonates with output capacitance at 30 GHz

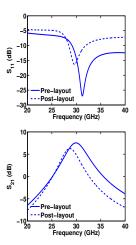
- Uppermost metal (M9) for interconnect lines

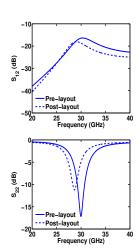

- Pad's capacitance as low as possible
- 0.3762 mm²


- Uppermost metal (M9) for interconnect lines
- Same orientation for all components
- Interaction between transmission lines and inductors should be avoided
- Width of interconnect lines determined by the current they have to drive
- Pad's capacitance as low as possible
- 0.3762 mm²

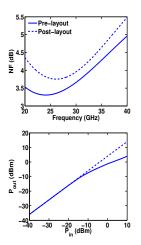
- Uppermost metal (M9) for interconnect lines
- Same orientation for all components
- Interaction between transmission lines and inductors should be avoided
- Pad's capacitance as low as possible
- 0.3762 mm²

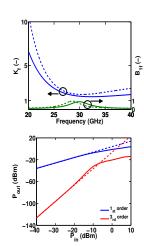

- Uppermost metal (M9) for interconnect lines
- Same orientation for all components
- Interaction between transmission lines and inductors should be avoided
- Width of interconnect lines determined by the current they have to drive
- Pad's capacitance as low as possible
- 0.3762 mm²


- Uppermost metal (M9) for interconnect lines
- Same orientation for all components
- Interaction between transmission lines and inductors should be avoided
- Width of interconnect lines determined by the current they have to drive
- Pad's capacitance as low as possible
- 0.3762 mm²



- Uppermost metal (M9) for interconnect lines
- Same orientation for all components
- Interaction between transmission lines and inductors should be avoided
- Width of interconnect lines determined by the current they have to drive
- Pad's capacitance as low as possible
- 0.3762 mm²




30 GHz LNA S-Parameters

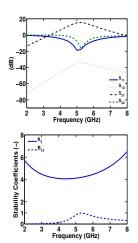
30 GHz LNA Noise, Stability, Linearity

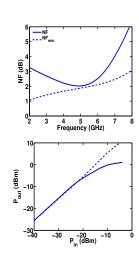
30 GHz Single-Stage LNA Overall FoM

•
$$FoM = \frac{Gain(dB) \cdot IIP3(mW) \cdot f_c(GHz)}{(NF-1)(abs) \cdot P_{DC}(mW)}$$

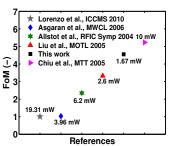
	This work	Abadi et al.	Yu et al.	Ribeiro et al.	Sanduleanu et al.
	ICCDCS 2012	RFIC 2007	MWCL 2004	EUROCON 2011	RFIC 2006
Process (nm)	90	90	180	130	90
Freq. (GHz)	28.9	28.5	25.7	30	32.5
S ₂₁ (dB)	5.9	20	8.9	7.4	18.6
NF (dB)	3.9	2.9	6.9	3.7	3
IIP3 (dB)	4.9	-7.5	2.8	6	-
P _{DC} (mW)	7.2	16.2	54	7	10
Area (mm ²)	0.37	0.67	0.73	0.17*	0.85
FoM (-)	25.3	3.3	1.4	45.8	-

- System level analysis of WiMAX RX
 - NF = 3dB, Gain = 18dB (could be relaxed)
- Operation at 5.3 *GHz*


- - $I_D = 1.47 mA$
 - IC close to the center of M.I.


- System level analysis of WiMAX RX
 - NF = 3dB, Gain = 18dB (could be relaxed)
- Operation at 5.3*GHz*
- Based on cascode topology (Andreani et al., CAS2 2001)
- Extracted EKV3 model rather than the commercial one
- Bias in **M.I.** region via $(G_m/I_D) \cdot f_T$
 - $I_D = 1.47 \, mA$
 - *IC* close to the center of M.I.

- System level analysis of WiMAX RX
 - NF = 3dB, Gain = 18dB (could be relaxed)
- Operation at 5.3GHz
- Based on cascode topology (Andreani et al., CAS2 2001)
- Extracted EKV3 model rather than the commercial one
- Bias in **M.I.** region via $(G_m/I_D) \cdot f_T$
 - $I_D = 1.47 mA$
 - *IC* close to the center of M.I.


- System level analysis of WiMAX RX
 - NF = 3dB, Gain = 18dB (could be relaxed)
- Operation at 5.3GHz
- Based on cascode topology (Andreani et al., CAS2 2001)
- Extracted EKV3 model rather than the commercial one
- Bias in **M.I.** region via $(G_m/I_D) \cdot f_T$
 - $I_D = 1.47 mA$
 - *IC* close to the center of M.I.

- System level analysis of WiMAX RX
 - NF = 3dB, Gain = 18dB (could be relaxed)
- Operation at 5.3GHz
- Based on cascode topology (Andreani et al., CAS2 2001)
- Extracted EKV3 model rather than the commercial one
- Bias in **M.I.** region via $(G_m/I_D) \cdot f_T$
 - $I_D = 1.47 mA$
 - IC close to the center of M.I.

• High overall performance $(FoM = \frac{Gain(dB) \cdot IIP3(mW) \cdot f_C(GHz)}{(NF-1)(abs) \cdot P_{DC}(mW)})$

- Device to circuit via $(G_m/I_D) \cdot f_T$ FoM
- Fairly high overall performance
- Low power consumption
- M.I. ideal for LNA design

Conclusions on LNA Design

- Device to circuit via $(G_m/I_D) \cdot f_T$ FoM
- Fairly high overall performance
- Low power consumption
- M.I. ideal for LNA design

Conclusions on LNA Design

- Device to circuit via $(G_m/I_D) \cdot f_T$ FoM
- Fairly high overall performance
- Low power consumption
- M.I. ideal for LNA design

Conclusions on LNA Design

- Device to circuit via $(G_m/I_D) \cdot f_T$ FoM
- Fairly high overall performance
- Low power consumption
- M.I. ideal for LNA design

- Device to circuit via $(G_m/I_D) \cdot f_T$ FoM
- Fairly high overall performance
- Low power consumption
- M.I. ideal for LNA design

- Low-power RF CMOS transceiver design
- Connection between device and circuit performance
 - Design, layout and fabrication of an RF Test Chip w. a 30 GHz LNA
 - FoM representative for LNA design vs. technology nodes, channel length and bias
 - Great potential of CMOS downscaling in realizing high performance low-power RFICs
- Validation through the design of a WiMAX LNA at 5.3 GHz
 - Operation in M.I.
 - $(G_m/I_D) \cdot f_T$ as a design guide
 - High overall performance w. minimum power consumption
- RF noise characteristics vs.channel length scaling and IC
- Excess noise factor
 - Importance in terms of RFIC design highlighted
 - Verified w. measurements for the first time
 - Impact of SCE
- Small-signal and noise results validated w. EKV

- Low-power RF CMOS transceiver design
- Connection between device and circuit performance
 - Design, layout and fabrication of an RF Test Chip w. a 30 GHz LNA
 - FoM representative for LNA design vs. technology nodes, channel length and bias
 - Great potential of CMOS downscaling in realizing high performance low-power RFICs
- Validation through the design of a WiMAX LNA at 5.3 GHz
 - Operation in M.I
 - $(G_m/I_D) \cdot t_T$ as a design guide
 - High overall performance w. minimum power consumption
- RF noise characteristics vs.channel length scaling and IC
- Excess noise factor
 - Importance in terms of RFIC design highlighted
 - Verified w. measurements for the first time
 - Impact of SCE
- Small-signal and noise results validated w. EKV

- Low-power RF CMOS transceiver design
- Connection between device and circuit performance
 - Design, layout and fabrication of an RF Test Chip w. a 30 GHz LNA
 - FoM representative for LNA design vs. technology nodes, channel length and bias
 - Great potential of CMOS downscaling in realizing high performance low-power RFICs
- Validation through the design of a WiMAX LNA at 5.3 GHz
 - Operation in M.I.
 - $(G_m/I_D) \cdot f_T$ as a design guide
 - High overall performance w. minimum power consumption
- RF noise characteristics vs.channel length scaling and IC
- Excess noise factor
 - Importance in terms of RFIC design highlighted
 - Verified w. measurements for the first time
 - Impact of SCE
- Small-signal and noise results validated w. EKV3

- Low-power RF CMOS transceiver design
- Connection between device and circuit performance
 - Design, layout and fabrication of an RF Test Chip w. a 30 GHz LNA
 - FoM representative for LNA design vs. technology nodes, channel length and bias
 - Great potential of CMOS downscaling in realizing high performance low-power RFICs
- Validation through the design of a WiMAX LNA at 5.3 GHz
 - Operation in M.I.
 - $(G_m/I_D) \cdot f_T$ as a design guide
 - High overall performance w. minimum power consumption
- RF noise characteristics vs.channel length scaling and IC
- Excess noise factor
 - Importance in terms of RFIC design highlighted
 - Verified w. measurements for the first time
 - Impact of SCE
- Small-signal and noise results validated w. EKV3

- Low-power RF CMOS transceiver design
- Connection between device and circuit performance
 - Design, layout and fabrication of an RF Test Chip w. a 30 GHz LNA
 - FoM representative for LNA design vs. technology nodes, channel length and bias
 - Great potential of CMOS downscaling in realizing high performance low-power RFICs
- Validation through the design of a WiMAX LNA at 5.3 GHz
 - Operation in M.I.
 - $(G_m/I_D) \cdot f_T$ as a design guide
 - High overall performance w. minimum power consumption
- RF noise characteristics vs.channel length scaling and IC
- Excess noise factor
 - Importance in terms of RFIC design highlighted
 - Verified w. measurements for the first time
 - Impact of SCE
- Small-signal and noise results validated w. EKV.

- Low-power RF CMOS transceiver design
- Connection between device and circuit performance
 - Design, layout and fabrication of an RF Test Chip w. a 30 GHz LNA
 - FoM representative for LNA design vs. technology nodes, channel length and bias
 - Great potential of CMOS downscaling in realizing high performance low-power RFICs
- Validation through the design of a WiMAX LNA at 5.3 GHz
 - Operation in M.I.
 - $(G_m/I_D) \cdot f_T$ as a design guide
 - High overall performance w. minimum power consumption
- RF noise characteristics vs.channel length scaling and IC
- Excess noise factor
 - Importance in terms of RFIC design highlighted
 - Verified w. measurements for the first time
 - Impact of SCE
- Small-signal and noise results validated w. EKV3

Journal Publications

- A. Antonopoulos, M. Bucher, K. Papathanasiou, N. Mavredakis, N. Makris, R. K. Sharma, P. Sakalas, M. Schroter, "CMOS Small-Signal and Thermal Noise Modeling at High Frequencies", *IEEE Trans. Electron Devices*, Vol. 60, No. 11, November 2013.
- A. Antonopoulos, M. Bucher, K. Papathanasiou, N. Makris, N. Mavredakis, R. K. Sharma, P. Sakalas, M. Schroter, "Modeling of High Frequency Noise of Silicon MOS Transistors for RFIC Design", International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, special issue on Modeling of high-frequency silicon transistors, in press.
- W. Grabinski, M. Brinson, P. Nenzi, F. Lannutti, N. Makris, A. Antonopoulos, M. Bucher, "Open source circuit simulation tools for RF compact semiconductor device modelling", International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, special issue on Modeling of high-frequency silicon transistors, invited paper, in press.

Conference Publications

Objective

- A. Antonopoulos, M. Bucher, K. Papathanasiou, N. Makris, R. K. Sharma, P. Sakalas, M. Schroter, "CMOS RF Noise, Scaling, and Compact Modeling for RFIC Design", *IEEE Radio Frequency Integrated Circuits Symposium (RFIC)*, pp. 53-56, Seattle, June 2013.
- R.K Sharma, A. Antonopoulos, N. Mavredakis, M. Bucher, "Impact of Design Engineering on RF Linearity and Noise Performance of Nanoscale DG SOI MOSFETs", 14th International Conference on Ultime Integration on Silicon (ULIS), pp. 145-148, Coventry, 2013.
- A. Antonopoulos, K. Papathanasiou, M. Bucher, K. Papathanasiou, "CMOS LNA Design at 30 GHz A Case Study", 8th International Caribbean Conference on Devices Circuits and Systems (ICCDCS), pp. 1-4, Playa Del Carmen, 2012.
- R. K. Sharma, A. Antonopoulos, N. Mavredakis, M. Bucher, "Analog/RF Figures of Merit of Advanced DG MOSFETs", 8th International Caribbean Conference on Devices Circuits and Systems (ICCDCS), pp. 1-4, Playa Del Carmen, 2012.
- K. Papathanasiou, N. Makris, A. Antonopoulos, M. Bucher, "Moderate inversion: analog and RF benchmarking of the EKV3 compact model", 29th International Conference on Microelectronics (MIEL), Belgrade, May 12-14, 2014, accepted.

Acknowledgements

Η παρούσα έρευνα έχει συγχρηματοδοτηθεί από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο - ΕΚΤ) και από εθνικούς πόρους μέσω του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» του Εθνικού Στρατηγικού Πλαισίου Αναφοράς (ΕΣΠΑ) - Ερευνητικό Χρηματοδοτούμενο Έργο: Ηράκλειτος ΙΙ. Επένδυση στην κοινωνία της γνώσης μέσω του Ευρωπαϊκού Κοινωνικού Ταμείου.

Thank you for your attention!

Conclusions