Mathematical and computational modeling for the generation and propagation of waves in marine and coastal environments

Maria Kazolea

School of Environmental Engineering Technical University of Crete

September 27, 2013

Introduction

Conclusions

Motivation

Discretize **depth-integrated** equations that model free surface flows, using mass and momentum conservation, by (unstructured) FV schemes.

Most popular (applied): Nonlinear Shallow Water Equations (SWE)

Motivation

Introduction

0000

Discretize **depth-integrated** equations that model free surface flows, using mass and momentum conservation, by (unstructured) FV schemes.

- Most popular (applied): Nonlinear Shallow Water Equations (SWE)
 - Limitation: Not applicable for wave propagation in intermediate
 / deeper waters (dispersion has an effect on free surface flow)
- Popular Boussinesq-type (BT) models for intermediate water depths:
 - Peregrine's standard equations (1967) but for $\frac{h}{L} \approx \frac{1}{5}$

Motivation

Introduction

0000

Discretize **depth-integrated** equations that model free surface flows, using mass and momentum conservation, by (unstructured) FV schemes.

- Most popular (applied): Nonlinear Shallow Water Equations (SWE)
 - Limitation: Not applicable for wave propagation in intermediate / deeper waters (dispersion has an effect on free surface flow)
- Popular Boussinesq-type (BT) models for intermediate water depths:
 - Peregrine's standard equations (1967) but for $\frac{h}{L} \approx \frac{1}{5}$
 - Madsen and Sörensen's (MS) equations (1992)
 - Nowgu's equations (1993) for $\frac{h}{L} \approx \frac{1}{2}$
 - Beji and Nadaoka (BN) equations (1996)

Introduction

0000

Discretize **depth-integrated** equations that model free surface flows, using mass and momentum conservation, by (unstructured) FV schemes.

- Most popular (applied): Nonlinear Shallow Water Equations (SWE)
 - Limitation: Not applicable for wave propagation in intermediate / deeper waters (dispersion has an effect on free surface flow)
- Popular Boussinesq-type (BT) models for intermediate water depths:
 - Peregrine's standard equations (1967) but for $\frac{h}{L} \approx \frac{1}{5}$
 - Madsen and Sörensen's (MS) equations (1992)
 - Nowgu's equations (1993) for $\frac{h}{L} \approx \frac{1}{2}$
 - Beji and Nadaoka (BN) equations (1996)
 - Gobbi, Kirby and Wei BT model (2000)
 - Variety of BT models that include higher-order nonlinear and dispersive terms: P.A. Madsen et al. (2002-2009), Lynett et al. (2004-2010).

 Until recently, Finite-Differences (FD) was the predominant method based on the work of Wei & Kirby (1995), for 1D & 2D computations

- Until recently, Finite-Differences (FD) was the predominant method based on the work of Wei & Kirby (1995), for 1D & 2D computations
- More recently hybrid FV/FD schemes in 1D & 2D:
 - Nwogu's, MS, BN, Serre Green-Green Naghdi S-GN equations using: Riemann solvers (Roe's and HLL-type), MUSCL-type reconstructions. Erduran et al. (2005 & 2007), Cienfuegos et al (2006 & 2007), Tonelli & Petti (2009), Shiach & Mingham (2009), Roeber et al. (2010), Bonneton et al. (2010), Kazolea & Delis (2011), Dutykh et al. (2011).

- Until recently, Finite-Differences (FD) was the predominant method based on the work of Wei & Kirby (1995), for 1D & 2D computations
- More recently hybrid FV/FD schemes in 1D & 2D:
 - Nwogu's, MS, BN, Serre Green-Green Naghdi S-GN equations using: Riemann solvers (Roe's and HLL-type), MUSCL-type reconstructions. Erduran et al. (2005 & 2007), Cienfuegos et al (2006 & 2007), Tonelli & Petti (2009), Shiach & Mingham (2009), Roeber et al. (2010), Bonneton et al. (2010), Kazolea & Delis (2011), Dutykh et al. (2011).
 - MS equations in 2D Tonelli & Petti (2009 & 2010), two-layer BT equations Lynnet et al., (2006-2010), TVD Boussinesq solver Shi, Kirby et. al. (2012).

- Until recently, Finite-Differences (FD) was the predominant method based on the work of Wei & Kirby (1995), for 1D & 2D computations
- More recently hybrid FV/FD schemes in 1D & 2D:
 - Nwogu's, MS, BN, Serre Green-Green Naghdi S-GN equations using: Riemann solvers (Roe's and HLL-type), MUSCL-type reconstructions. Erduran et al. (2005 & 2007), Cienfuegos et al (2006 & 2007), Tonelli & Petti (2009), Shiach & Mingham (2009), Roeber et al. (2010), Bonneton et al. (2010), Kazolea & Delis (2011), Dutykh et al. (2011).
 - MS equations in 2D Tonelli & Petti (2009 & 2010), two-layer BT equations Lynnet et al., (2006-2010), TVD Boussinesq solver Shi, Kirby et. al. (2012).
- 2D Finite Element (FE) on unstructured meshes: Walkey & Berzins (2002), Sorensen et al. (2004), Escilsson & Sherwin (2006) and Engsig-Karup et al. (2008).

Introduction

- Until recently, Finite-Differences (FD) was the predominant method based on the work of Wei & Kirby (1995), for 1D & 2D computations
- More recently hybrid FV/FD schemes in 1D & 2D:
 - Nwogu's, MS, BN, Serre Green-Green Naghdi S-GN equations using: Riemann solvers (Roe's and HLL-type), MUSCL-type reconstructions. Erduran et al. (2005 & 2007), Cienfuegos et al (2006 & 2007), Tonelli & Petti (2009), Shiach & Mingham (2009), Roeber et al. (2010), Bonneton et al. (2010), Kazolea & Delis (2011), Dutykh et al. (2011).
 - MS equations in 2D Tonelli & Petti (2009 & 2010), two-layer BT equations Lynnet et al., (2006-2010), TVD Boussinesq solver Shi, Kirby et. al. (2012).
- 2D Finite Element (FE) on unstructured meshes: Walkey & Berzins (2002), Sorensen et al. (2004), Escilsson & Sherwin (2006) and Engsig-Karup et al. (2008).
- FV for unstructured meshes: Only one work by Asmar and Nwogu (2006) using a low-order staggered scheme

Physical problem set up

0000

Outline

- Physical problem set up
- Discretization of Nwogu's and Madsen and Sørensen's extened BT models in 1D
- Numerical results in 1D

- Physical problem set up
- Discretization of Nwogu's and Madsen and Sørensen's extened BT models in 1D
- Numerical results in 1D
- Comparison of two 2D FV schemes on triangles

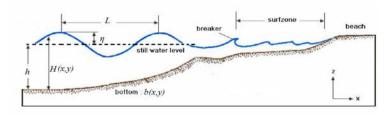
Introduction

- Physical problem set up
- Discretization of Nwogu's and Madsen and Sørensen's extened BT models in 1D
- Numerical results in 1D
- Comparison of two 2D FV schemes on triangles
- A new unstructured FV scheme for BT equations
- Numerical results in 2D

Introduction

- Physical problem set up
- Discretization of Nwogu's and Madsen and Sørensen's extened BT models in 1D
- Numerical results in 1D
- Comparison of two 2D FV schemes on triangles
- A new unstructured FV scheme for BT equations
- Numerical results in 2D
- Conclusions

Physical problem setup



 η : free surface elevation;

h: steel water level;

 $H = \eta + h$: total water depth;

b: bottom topography;

L: wave length;

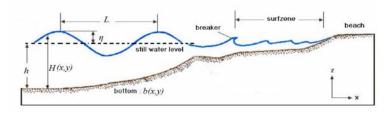
A: wave amplitude

Deep water: $\frac{h}{L} > \frac{1}{2}$

Intermediate water: $\frac{1}{20} < \frac{h}{L} \le \frac{1}{2}$

Shallow water: $\frac{h}{L} \le \frac{1}{20}$

Physical problem setup



 η : free surface elevation;

h: steel water level;

 $H = \eta + h$: total water depth;

b: bottom topography;

L: wave length;

A: wave amplitude

Deep water: $\frac{h}{L} > \frac{1}{2}$

Intermediate water: $\frac{1}{20} < \frac{h}{L} \le \frac{1}{2}$

Shallow water: $\frac{h}{L} \leq \frac{1}{20}$

Mathematical models: Nwogu's equations

Vector conservative form (for both models):

$$\mathbf{U}_t + \mathbf{F}(\mathbf{U}^{\star})_{\mathsf{x}} = \mathbf{S}(\mathbf{U}),\tag{1}$$

$$\mathbf{U} \quad = \quad \left[\begin{array}{c} H \\ P^* \end{array} \right], \; \mathbf{F}(\mathbf{U}) = \left[\begin{array}{c} H u \\ H u^2 + \frac{1}{2}gH^2 \end{array} \right], \; \mathbf{U}^{\star} = \left[\begin{array}{c} H \\ H u \end{array} \right].$$

Using $z_a = 0.53753h$ as optimal reference depth (Roeber et al., 2010).

Mathematical models: Nwoqu's equations

Vector conservative form (for both models):

$$\mathbf{U}_t + \mathbf{F}(\mathbf{U}^{\star})_{\mathsf{X}} = \mathbf{S}(\mathbf{U}),\tag{1}$$

$$\mathbf{U} = \begin{bmatrix} H \\ P^* \end{bmatrix}, \ \mathbf{F}(\mathbf{U}) = \begin{bmatrix} Hu \\ Hu^2 + \frac{1}{2}gH^2 \end{bmatrix}, \ \mathbf{U}^* = \begin{bmatrix} H \\ Hu \end{bmatrix}.$$

Using $z_a = 0.53753h$ as optimal reference depth (Roeber et al., 2010).

•
$$P^* = Hu + Hz_a \left(\frac{z_a}{2} u_{xx} + (hu)_{xx} \right)$$
 ["Velocity" function]

Conclusions

Mathematical models: Nwoqu's equations

Vector conservative form (for both models):

$$\mathbf{U}_t + \mathbf{F}(\mathbf{U}^{\star})_{\mathsf{X}} = \mathbf{S}(\mathbf{U}),\tag{1}$$

$$\mathbf{U} = \begin{bmatrix} H \\ P^* \end{bmatrix}, \ \mathbf{F}(\mathbf{U}) = \begin{bmatrix} Hu \\ Hu^2 + \frac{1}{2}gH^2 \end{bmatrix}, \ \mathbf{U}^* = \begin{bmatrix} H \\ Hu \end{bmatrix}.$$

Using $z_a = 0.53753h$ as optimal reference depth (Roeber et al., 2010).

$$P^* = Hu + Hz_a \left(\frac{z_a}{2} u_{xx} + (hu)_{xx} \right)$$

["Velocity" function]

$$\bullet \ \ S(U) = S_b + S_f + S_d$$

Introduction

[Source terms]

Conclusions

1D BT models

0000000

$$\mathbf{U}_t + \mathbf{F}(\mathbf{U}^{\star})_{\mathsf{X}} = \mathbf{S}(\mathbf{U}),\tag{1}$$

$$\mathbf{U} = \begin{bmatrix} H \\ P^* \end{bmatrix}, \ \mathbf{F}(\mathbf{U}) = \begin{bmatrix} Hu \\ Hu^2 + \frac{1}{2}gH^2 \end{bmatrix}, \ \mathbf{U}^* = \begin{bmatrix} H \\ Hu \end{bmatrix}.$$

Using $z_a = 0.53753h$ as optimal reference depth (Roeber et al., 2010).

•
$$P^* = Hu + Hz_a \left(\frac{z_a}{2} u_{xx} + (hu)_{xx}\right)$$
 ["Velocity" function]

$$\mathbf{S_b} = [0 \quad -gHb_x]^T, \ \mathbf{S_f} = [0 \quad -gHS_f], \ \mathbf{S_d} = [-\psi_C \quad -u\psi_C + \psi_M - \textcolor{red}{R_b}]$$

$$S_f = n_m^2 \frac{u|u|}{H^{-4/3}}$$
 Friction force, $n_m =$ Manning coeff.

Mathematical models: Nwoqu's equations

Introduction

1D BT models

0000000

Vector conservative form (for both models):

$$\mathbf{U}_t + \mathbf{F}(\mathbf{U}^{\star})_{\mathsf{X}} = \mathbf{S}(\mathbf{U}),\tag{1}$$

$$\mathbf{U} \quad = \quad \left[\begin{array}{c} H \\ P^* \end{array} \right], \; \mathbf{F}(\mathbf{U}) = \left[\begin{array}{c} H u \\ H u^2 + \frac{1}{2}gH^2 \end{array} \right], \; \mathbf{U}^\star = \left[\begin{array}{c} H \\ H u \end{array} \right].$$

Using $z_a = 0.53753h$ as optimal reference depth (Roeber et al., 2010).

•
$$P^* = Hu + Hz_a \left(\frac{z_a}{2} u_{xx} + (hu)_{xx}\right)$$
 ["Velocity" function]

$$\bullet \ S(U) = S_b + S_f + S_d$$
 [Source terms]

$$\mathbf{S_b} = [0 \quad -gHb_x]^T, \ \mathbf{S_f} = [0 \quad -gHS_f], \ \mathbf{S_d} = [-\psi_C \quad -u\psi_C + \psi_M - \frac{\mathbf{R_b}}{\mathbf{P_b}}]$$

$$S_f = n_m^2 \frac{u|u|}{H^{-4/3}}$$
 Friction force, $n_m =$ Manning coeff.

•
$$\psi_M = H_t z_a \left(\frac{z_a}{2} u_{xx} + (hu)_{xx} \right), \ \psi_C = \left[\left(\frac{z_a^2}{2} - \frac{h^2}{6} \right) h u_{xx} + \left(z_a + \frac{h}{2} \right) h (hu)_{xx} \right]_x$$

R_b parametrization of wave breaking characteristics

Conclusions

0000000

Mathematical models: Madsen & Sørensen's equations

•
$$P^* = Hu - (B + \frac{1}{3})h^2(Hu)_{xx} - \frac{1}{3}h_x(Hu)_x$$
 ["Velocity" function]

Introduction

1D BT models

0000000

Mathematical models: Madsen & Sørensen's equations

•
$$P^* = Hu - (B + \frac{1}{3})h^2(Hu)_{xx} - \frac{1}{3}h_x(Hu)_x$$
 ["Velocity" function]

where now
$$\mathbf{S}_{d} = \begin{bmatrix} 0 & -\psi - R_{b} \end{bmatrix}$$
 and

•
$$P^* = Hu - (B + \frac{1}{3})h^2(Hu)_{xx} - \frac{1}{3}h_x(Hu)_x$$
 ["Velocity" function]

$$\bullet \ \ S(U) = S_b + S_f + S_d \qquad \qquad [Source \ term]$$

where now
$$\mathbf{S_d} = \begin{bmatrix} 0 & -\psi - R_b \end{bmatrix}$$
 and

Introduction

1D BT models

0000000

 $B = \frac{1}{15}$ determines the dispersion properties of the system.

 Advective part and topography source: Well-balanced FV formulation Dispersive terms: Finite differences.

- Advective part and topography source: Well-balanced FV formulation Dispersive terms: Finite differences.
- Roe's Riemann solver is used (Roe, 1981).

- Advective part and topography source: Well-balanced FV formulation
 Dispersive terms: Finite differences.
- Roe's Riemann solver is used (Roe, 1981).
- Upwinding of the topography source term (Bermudez et al., 1994, Delis et al., 2008).

- Advective part and topography source: Well-balanced FV formulation
 Dispersive terms: Finite differences.
- Roe's Riemann solver is used (Roe, 1981).
- Upwinding of the topography source term (Bermudez et al., 1994, Delis et al., 2008).
- High-order spatial accuracy: fourth order MUSCL-type scheme (Yamamoto et al., 1998).

- Advective part and topography source: Well-balanced FV formulation
 Dispersive terms: Finite differences.
- Roe's Riemann solver is used (Roe, 1981).
- Upwinding of the topography source term (Bermudez et al., 1994, Delis et al., 2008).
- High-order spatial accuracy: fourth order MUSCL-type scheme (Yamamoto et al., 1998).
- For dispersive terms: fourth order FD of first-order spatial derivatives, second and third-order FD for second and third-order derivatives.
- Satisfy the C-property (flow at rest) to higher spatial order: Addition of an extra term to bed upwinding (Hubbard and Garcia-Navarro, 2000 and Delis and Nikolos. 2009)

Numerical Model (cont.)

- Special treatment wet/dry fronts:
 - Identify dry cells: through a tolerance parameter
 - Consistent depth reconstruction: satisfy $\frac{\partial h}{\partial x} = -\frac{\partial b}{\partial x}$ to high-order on wet/dry fronts
 - Satisfy an extended C-property: Redefinition of the bed slope, numerical fluxes are computed assuming temporarily zero velocity at wet/dry faces (Brufau et al., 2004)
- Time Integration (should at least match the order of truncation errors from dispersion terms): Third order Adams-Basforth predictor and fourth-order Adams-Moulton corrector stage.

Numerical Model (cont.)

- Special treatment wet/dry fronts:
 - Identify dry cells: through a tolerance parameter
 - Consistent depth reconstruction: satisfy $\frac{\partial h}{\partial x} = -\frac{\partial b}{\partial x}$ to high-order on wet/dry fronts
 - Satisfy an extended C-property: Redefinition of the bed slope, numerical fluxes are computed assuming temporarily zero velocity at wet/dry faces (Brufau et al., 2004)
- Time Integration (should at least match the order of truncation errors from dispersion terms): Third order Adams-Basforth predictor and fourth-order Adams-Moulton corrector stage.
- Extract depth averaged velocities, u, from the "velocities" functions P^* by solving a tridiagonal system.

Numerical Model (cont.)

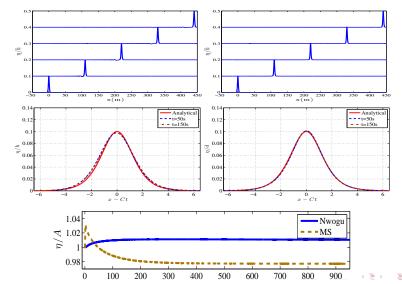
- Special treatment wet/dry fronts:
 - Identify dry cells: through a tolerance parameter
 - Consistent depth reconstruction: satisfy $\frac{\partial h}{\partial x} = -\frac{\partial b}{\partial x}$ to high-order on wet/dry fronts
 - Satisfy an extended C-property: Redefinition of the bed slope, numerical fluxes are computed assuming temporarily zero velocity at wet/dry faces (Brufau et al., 2004)
- Time Integration (should at least match the order of truncation errors from dispersion terms): Third order Adams-Basforth predictor and fourth-order Adams-Moulton corrector stage.
- Extract depth averaged velocities, u, from the "velocities" functions P* by solving a tridiagonal system, Thomas algorithm.

1D BT models

00000000

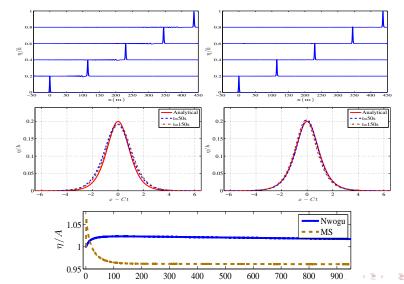
Numerical Test & Results in 1D: (Solitary wave propagation)

Two cases: A/=0.1 Dx=0.05 $C_r=0.4$ (MS left, Nwogu's right)



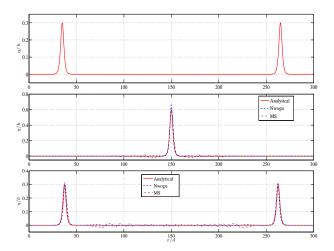
Solitary wave propagation

Two cases: $A/h = 0.2 Dx = 0.05 C_r = 0.4$ (MS left, Nwogu's right)

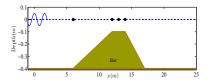


Head on collision of two solitary waves

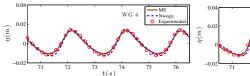
$$A/h = 0.3 \ Dx = 0.1 m \ C_r = 0.4, \ x \in [0,300]$$

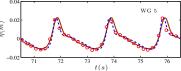


$$T = 2.02s, H = 0.02, h/L = 0.11, Dx = 0.04m$$

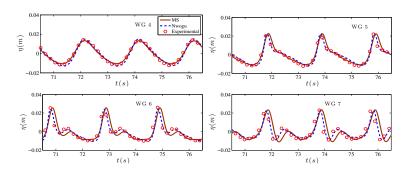


$$T = 2.02s$$
, $H = 0.02$, $h/L = 0.11$, $Dx = 0.04m$

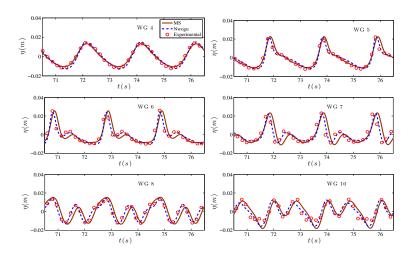




$$T = 2.02s$$
, $H = 0.02$, $h/L = 0.11$, $Dx = 0.04m$



T = 2.02s, H = 0.02, h/L = 0.11, Dx = 0.04m



Mathematical Model: The NSWE

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathcal{H}(\mathbf{U}) = \mathcal{L}(\mathbf{U}) \text{ on } \Omega \times [0, t] \subset \mathbb{R}^2 \times \mathbb{R}^+,$$

$$\mathbf{U} = \begin{bmatrix} H \\ Hu \\ Hv \end{bmatrix}, \mathcal{H}(\mathbf{U}) = [\mathbf{F}, \mathbf{G}] = \begin{bmatrix} Hu & Hv \\ Hu^2 + \frac{1}{2}gH^2 & Huv \\ Huv & Hv^2 + \frac{1}{2}gh^2 \end{bmatrix},$$

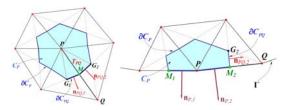
$$\mathcal{L}(\mathbf{U}) = [\mathbf{R}^1 + \mathbf{R}^2 + \mathbf{S}_h]$$

$$\mathbf{R}^1 = \begin{bmatrix} 0 & -gH rac{\partial b(x,y)}{\partial x} & 0 \end{bmatrix}^T \text{ and } \mathbf{R}^2 = \begin{bmatrix} 0 & 0 & -gH rac{\partial b(x,y)}{\partial y} \end{bmatrix}^T.$$

$$\mathbf{S} = \begin{bmatrix} 0 & -gHS_x^f & -gHS_y^f \end{bmatrix}^T \quad \text{with}$$

$$S_x^f = \frac{n_m^2 u ||\mathbf{u}||}{H^{\frac{4}{3}}} \quad \text{and} \quad S_y^f = \frac{n_m^2 v ||\mathbf{u}||}{H^{\frac{4}{3}}},$$

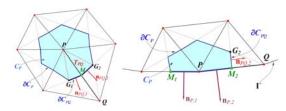
NCFV approach



$$\iint_{C_{P}} \frac{\partial \mathbf{U}}{\partial t} d\Omega + \iint_{C_{P}} \nabla \cdot \mathcal{H} d\Omega = \iint_{C_{P}} \mathbf{S} d\Omega \implies \frac{\partial}{\partial t} \iint_{C_{P}} \mathbf{U} d\Omega + \oint_{\partial C_{P}} \mathcal{H} \cdot \widetilde{\mathbf{n}} dl = \iint_{C_{P}} \mathbf{S} d\Omega$$

NCFV approach

Introduction



$$\iint_{C_{P}} \frac{\partial \mathbf{U}}{\partial t} d\Omega + \iint_{C_{P}} \nabla \cdot \mathcal{H} d\Omega = \iint_{C_{P}} \mathbf{S} d\Omega \Rightarrow \frac{\partial}{\partial t} \iint_{C_{P}} \mathbf{U} d\Omega + \oint_{\partial C_{P}} \mathcal{H} \cdot \widetilde{\mathbf{n}} dl = \iint_{C_{P}} \mathbf{S} d\Omega$$

Introducing the flux vectors

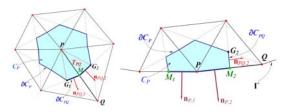
$$\mathbf{\Phi}_{PQ} = \int_{\partial C_{PQ}} \left(\mathbf{F} \tilde{n}_x + \mathbf{G} \tilde{n}_y \right) dl$$
 and $\mathbf{\Phi}_{P,\Gamma} = \int_{\partial C_P \cap \Gamma} \left(\mathbf{F} \tilde{n}_x + \mathbf{G} \tilde{n}_y \right) dl$

Hence, FV scheme reads

$$\frac{\partial \mathbf{U}_{P}}{\partial t} = -\frac{1}{|C_{P}|} \sum_{Q \in K_{P}} \mathbf{\Phi}_{PQ} - \frac{1}{|C_{P}|} \mathbf{\Phi}_{P,\Gamma} + \frac{1}{|C_{P}|} \iint_{C_{P}} (\mathbf{S}_{b} + \mathbf{S}_{d} + \mathbf{S}_{f}) d\Omega$$

NCFV approach

Introduction



$$\iint_{C_{P}} \frac{\partial \mathbf{U}}{\partial t} d\Omega + \iint_{C_{P}} \nabla \cdot \mathcal{H} d\Omega = \iint_{C_{P}} \mathbf{S} d\Omega \Rightarrow \frac{\partial}{\partial t} \iint_{C_{P}} \mathbf{U} d\Omega + \oint_{\partial C_{P}} \mathcal{H} \cdot \widetilde{\mathbf{n}} dl = \iint_{C_{P}} \mathbf{S} d\Omega$$

Introducing the flux vectors

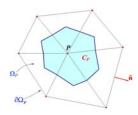
$$\mathbf{\Phi}_{PQ} = \int_{\partial C_{PQ}} \left(\mathbf{F} \tilde{n}_x + \mathbf{G} \tilde{n}_y \right) dl$$
 and $\mathbf{\Phi}_{P,\Gamma} = \int_{\partial C_P \cap \Gamma} \left(\mathbf{F} \tilde{n}_x + \mathbf{G} \tilde{n}_y \right) dl$

Hence, FV scheme reads

$$\frac{\partial \mathbf{U}_{P}}{\partial t} = -\frac{1}{|C_{P}|} \sum_{C \in K_{C}} \mathbf{\Phi}_{PQ} - \frac{1}{|C_{P}|} \mathbf{\Phi}_{P,\Gamma} + \frac{1}{|C_{P}|} \iint_{C_{P}} (\mathbf{S}_{b} + \mathbf{S}_{d} + \mathbf{S}_{f}) d\Omega$$

 Φ_{PO} Numerical flux

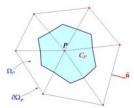
Conclusions



$$|C_P| = \frac{1}{3}|\Omega_P|$$

$$\iint_{\Omega_P} \nabla w dA = \oint_{\partial \Omega_P} w \widetilde{\mathbf{n}} dl \Rightarrow$$

$$(\nabla w)_P = \frac{1}{|C_P|} \sum_{Q \in K} \frac{1}{2} (w_P + w_Q) \mathbf{n}_{PQ}$$

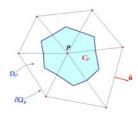


$$|C_P| = \frac{1}{3}|\Omega_P|$$

$$\iint_{\Omega_P} \nabla w dA = \oint_{\partial \Omega_P} w \widetilde{\mathbf{n}} dl \Rightarrow$$

$$(\nabla w)_P = \frac{1}{|C_P|} \sum_{Q \in K_Q} \frac{1}{2} (w_P + w_Q) \mathbf{n}_{PQ}$$

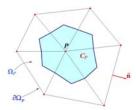
$$\begin{split} \iint_{\Omega_P} & \nabla \cdot \mathbf{u} d\Omega &= \oint_{\partial \Omega_P} \mathbf{u} \cdot \tilde{\mathbf{n}} dl = \sum_{Q \in K_P} \frac{3}{2} (\mathbf{u}_P + \mathbf{u}_Q) \cdot \mathbf{n}_{PQ} \Rightarrow \\ & (\nabla \cdot \mathbf{u})_P &= \frac{1}{2|C_P|} \sum_{Q \in K_P} (\mathbf{u}_P + \mathbf{u}_Q) \cdot \mathbf{n}_{PQ} \end{split}$$



$$|C_P| = \frac{1}{3}|\Omega_P|$$

$$\iint_{\Omega_P} \nabla w dA = \oint_{\partial \Omega_P} w \widetilde{\mathbf{n}} dl \Rightarrow$$

$$(\nabla w)_P = \frac{1}{|C_P|} \sum_{Q \in K} \frac{1}{2} (w_P + w_Q) \mathbf{n}_{PQ}$$



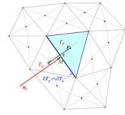
$$|C_{P}| = \frac{1}{3}|\Omega_{P}|$$

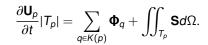
$$\iint_{\Omega_{P}} \nabla w dA = \oint_{\partial \Omega_{P}} w \widetilde{\mathbf{n}} dl \Rightarrow$$

$$(\nabla w)_{P} = \frac{1}{|C_{P}|} \sum_{Q \in K_{P}} \frac{1}{2} (w_{P} + w_{Q}) \mathbf{n}_{PQ}$$

$$\begin{aligned} w_{i,PQ}^{L} &= w_{i,P} + \frac{1}{2}\mathsf{LIM}\left((\nabla w_{i})_{P}^{upw} \cdot \mathbf{r}_{PQ}, (\nabla w_{i})^{cent} \cdot \mathbf{r}_{PQ}\right) \\ w_{i,PQ}^{R} &= w_{i,Q} - \frac{1}{2}\mathsf{LIM}\left((\nabla w_{i})_{Q}^{upw} \cdot \mathbf{r}_{PQ}, (\nabla w_{i})^{cent} \cdot \mathbf{r}_{PQ}\right) \\ (\nabla w_{i})_{i}^{cent} \cdot \mathbf{r}_{PQ} &= w_{i,Q} - w_{i,P}, (\nabla w_{i})_{P}^{upw} \cdot \mathbf{r}_{PQ} = 2(\nabla w_{i})_{P} - (\nabla w_{i})^{cent} \end{aligned}$$

CCFV approach





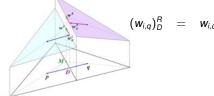
 Φ_q Numerical flux.

Linear reconstruction

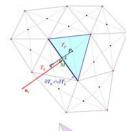
Naive calculation (at point D)

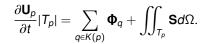
$$(w_{i,p})_{D}^{L} = w_{i,p} + \frac{\|\mathbf{r}_{pD}\|}{\|\mathbf{r}_{pq}\|} \mathsf{LIM}\left((\nabla w_{i})_{p}^{\mathsf{upw}} \cdot \mathbf{r}_{pq}, (\nabla w_{i})^{\mathsf{cent}} \cdot \mathbf{r}_{pq}\right);$$

$$(w_{i,q})_{D}^{R} = w_{i,q} - \frac{\|\mathbf{r}_{Dq}\|}{\|\mathbf{r}_{pq}\|} \mathsf{LIM}\left((\nabla w_{i})_{q}^{\mathsf{upw}} \cdot \mathbf{r}_{pq}, (\nabla w_{i})^{\mathsf{cent}} \cdot \mathbf{r}_{pq}\right),$$



Introduction





Numerical flux.

Linear reconstruction

Naive calculation (at point D)

$$(w_{i,p})_D = w_{i,p} + \frac{|\mathbf{r}_{pq}||}{|\mathbf{r}_{pq}||} \text{LIM}$$

$$(w_{i,q})_D^R = w_{i,q} - \frac{|\mathbf{r}_{Dq}||}{|\mathbf{r}_{pq}||} \text{LIM}$$
• Corrected calculation

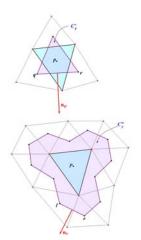
$$(w_{i,p})_D^L = w_{i,p} + \frac{\|\mathbf{r}_{\rho D}\|}{\|\mathbf{r}_{\rho q}\|} \mathsf{LIM} \left((\nabla w_i)_p^{\mathsf{upw}} \cdot \mathbf{r}_{\rho q}, (\nabla w_i)^{\mathsf{cent}} \cdot \mathbf{r}_{\rho q} \right);$$

$$(w_{i,q})_D^R = w_{i,q} - \frac{\|\mathbf{r}_{Dq}\|}{\|\mathbf{r}_{Dq}\|} \mathsf{LIM} \Big((\nabla w_i)_q^{\mathsf{upw}} \cdot \mathbf{r}_{pq}, (\nabla w_i)^{\mathsf{cent}} \cdot \mathbf{r}_{pq} \Big),$$

Corrected calculation (at point M) (Delis et al., 2011)

$$w_{i,p}^{L} = (w_{i,p})_{D}^{L} + \mathbf{r}_{DM} \cdot (\nabla w_{i})_{p},$$

$$w_{i,q}^{R} = (w_{i,q})_{D}^{R} + \mathbf{r}_{DM} \cdot (\nabla w_{i})_{q}.$$



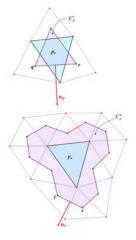
Three element (compact stencil) gradient

$$\nabla w_{i,p} = \frac{1}{|C_p^c|} \sum_{\substack{q,r \in K(p) \\ r \neq q}} \frac{1}{2} (w_{i,q} + w_{i,r}) \mathbf{n}_{q,r}$$

Extended element (wide stencil) gradient

$$\nabla w_{i,p} = \frac{1}{|C_p^w|} \sum_{l,r \in K'(p)} \frac{1}{2} \left(w_{i,l} + w_{i,r}\right) \mathbf{n}_{lr}$$

CCFV approach: Gradient formulas



Introduction

Three element (compact stencil) gradient

$$\nabla w_{i,p} = \frac{1}{|C_p^c|} \sum_{\substack{q,r \in K(p) \\ r \neq q}} \frac{1}{2} (w_{i,q} + w_{i,r}) \mathbf{n}_{q,r}$$

Extended element (wide stencil) gradient

$$\nabla w_{i,p} = \frac{1}{|C_p^w|} \sum_{\substack{l,r \in K'(p) \\ r \neq l}} \frac{1}{2} \Big(w_{i,l} + w_{i,r}\Big) \mathbf{n}_{lr}$$

★ Boundary conditions: use the theory of characteristics for weak formulation for the NCFV and ghost cells for CCFV scheme

Conclusions

Topography source discretization

Introduction

• Wel-ballanced schemes \Rightarrow introduce topography source flux vectors $\mathbf{S}_{\mathbf{b}}^{-}$:

$$\iint_{T_p} \mathbf{S_b}(\mathbf{U}^{\star}) dx dy = \sum_{q \in K(p)} \mathbf{S_{bq}^{-}} \quad (CCFV)$$

$$\iint_{C_P} \mathbf{S_b}(\mathbf{U}^{\star}) dx dy = \sum_{Q \in K_p} \mathbf{S_{bPQ}^{-}} \quad (NCFV)$$

• $\mathbf{S_b}^- = \frac{1}{2}\widetilde{\mathbf{P}}\left(\mathbf{I} - |\widetilde{\boldsymbol{\Lambda}}|\widetilde{\boldsymbol{\Lambda}}^{-1}\right)\widetilde{\mathbf{P}}^{-1}\widetilde{\mathbf{S_b}}$ where (for 1st order scheme):

$$\widetilde{\mathbf{S}_{\mathbf{b}}}\mid_{q} = \begin{bmatrix} 0 \\ -g\frac{H^{L} + H^{R}}{2} \left(b^{R} - b^{L}\right) n_{qx} \\ -g\frac{H^{L} + H^{R}}{2} \left(b^{R} - b^{L}\right) n_{qy} \end{bmatrix}_{q} \widetilde{\mathbf{S}_{\mathbf{b}}}\mid_{PQ} = \begin{bmatrix} 0 \\ -g\frac{H^{L} + H^{R}}{2} \left(b^{R} - b^{L}\right) n_{PQx} \\ -g\frac{H^{L} + H^{R}}{2} \left(b^{R} - b^{L}\right) n_{PQy} \end{bmatrix}_{PQ}$$

Conclusions

Introduction

Wel-ballanced schemes ⇒ introduce topography source flux vectors S_h:

$$\iint_{T_p} \mathbf{S_b}(\mathbf{U}^{\star}) dx dy = \sum_{q \in K(p)} \mathbf{S_{bq}^{-}} \quad (CCFV)$$

$$\iint_{C_p} \mathbf{S_b}(\mathbf{U}^{\star}) dx dy = \sum_{Q \in K_p} \mathbf{S_{bPQ}^{-}} \quad (NCFV)$$

• $\mathbf{S_b}^- = \frac{1}{2}\widetilde{\mathbf{P}}\left(\mathbf{I} - |\widetilde{\boldsymbol{\Lambda}}|\widetilde{\boldsymbol{\Lambda}}^{-1}\right)\widetilde{\mathbf{P}}^{-1}\widetilde{\mathbf{S_b}} + \mathbf{S_b^{\star}}$ /2nd order scheme, correction term

$$\mathbf{S_{b}}^{\star}|_{q} = \begin{bmatrix} 0 \\ -g\frac{H^{L} + H_{p}}{2} \left(b^{L} - b_{p}\right) n_{qx} \\ -g\frac{H^{L} + H_{p}}{2} \left(b^{L} - b_{p}\right) n_{qy} \end{bmatrix} \mathbf{S_{b}}^{\star}|_{PQ} = \begin{bmatrix} 0 \\ -g\frac{H^{L} + H_{p}}{2} \left(b^{L} - b_{p}\right) n_{PQx} \\ -g\frac{H^{L} + H_{p}}{2} \left(b^{L} - b_{p}\right) n_{PQy} \end{bmatrix}.$$

Topography source discretization (wet/dry)

- Extended C-property, (Castro et al, 2005)
- In the MUSCL scheme for hydrostatic conditions we must have, at *i*-cell

$$b^{L} - b_{i} = -(h^{L} - h_{i}) \Rightarrow (\nabla B)_{i} = -(\nabla h)_{i}$$

 If in the gradient calculation, of a wet cell, a dry node is involved we correct the h^L and/or h^R by imposing

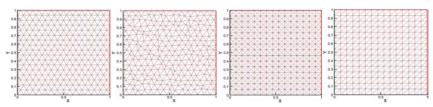
$$h^{L} = h_{i} - (b^{L} - b_{i})$$
 and/or $h^{R} = h_{j} - (b^{R} - b_{j})$

- Redefine the bed value in the dry node for emerging bed situations in S_b to maintain hydrostatic conditions, (Brufau et al, 2002).
- For water in motion over emerging slopes: If $h^L > \epsilon_{wd}$ and $h^R \le \epsilon_{wd}$ and $h^L < (b^B b^L)$, set temporarily for the wet *i*-cell $u^L = v^L = 0$

Numerical Results

Grids used:

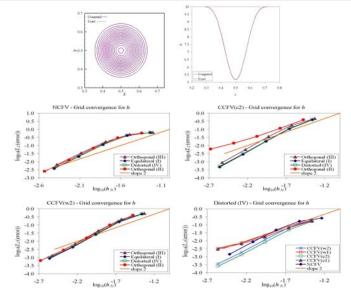
Introduction



- Consistently refined grids, for N =degrees of freedom, characteristic length $h_N = \sqrt{L_x \times L_y/N}$
- Equivalent meshes

Scheme	Description
NCFV	Node-Centered FV Scheme
CCFVc1	Cell-Centered FV compact (naive) reconstruction stencil
CCFVc2	Cell-Centered FV compact reconstruction stencil (corrected)
CCFVw1	Cell-Centered FV wide (naive) reconstruction stencil
CCFVw2	Cell-Centered FV wide reconstruction stencil (corrected)

The traveling vortex solution



 Convergence behavior to second order: NCFV is not grid dependent/ CCFV depents on the grid used.

- Convergence behavior to second order: NCFV is not grid dependent/ CCFV depents on the grid used.
- Edge based limiting procedure in the MUSCL reconstruction: inadequate for the CCFV schemes if the proposed correction not used.

- Convergence behavior to second order: NCFV is not grid dependent/ CCFV depents on the grid used.
- Edge based limiting procedure in the MUSCL reconstruction: inadequate for the CCFV schemes if the proposed correction not used.
- CCFVw2 has an almost identical behavior with the NCFV scheme is achieved, but with the extra computational cost introduced.

- Convergence behavior to second order: NCFV is not grid dependent/ CCFV depents on the grid used.
- Edge based limiting procedure in the MUSCL reconstruction: inadequate for the CCFV schemes if the proposed correction not used.
- CCFVw2 has an almost identical behavior with the NCFV scheme is achieved, but with the extra computational cost introduced.
- 4. Ghost cells for the boundary treatment in CCFV formulations can lead to an **order reduction**.

- Convergence behavior to second order: NCFV is not grid dependent/ CCFV depents on the grid used.
- Edge based limiting procedure in the MUSCL reconstruction: inadequate for the CCFV schemes if the proposed correction not used.
- CCFVw2 has an almost identical behavior with the NCFV scheme is achieved, but with the extra computational cost introduced.
- 4. Ghost cells for the boundary treatment in CCFV formulations can lead to an **order reduction**.
- Wet/dry treatment: accurate for both FV approaches on all grid types.

- Convergence behavior to second order: NCFV is not grid dependent/ CCFV depents on the grid used.
- Edge based limiting procedure in the MUSCL reconstruction: inadequate for the CCFV schemes if the proposed correction not used.
- CCFVw2 has an almost identical behavior with the NCFV scheme is achieved, but with the extra computational cost introduced.
- 4. Ghost cells for the boundary treatment in CCFV formulations can lead to an **order reduction**.
- Wet/dry treatment: accurate for both FV approaches on all grid types.

An unstructured FV scheme for BT Equations

Vector conservative form for Nwogu's equations:

Introduction

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathcal{H}(\mathbf{U}^{\star}) = \mathcal{L}(\mathbf{U}^{\star}) \, \text{on} \, \Omega \times [0, t] \subset \mathbb{R}^{2} \times \mathbb{R}^{+},$$

 ${f U}$ vector of the **new variables**, ${f U}^\star = [H, Hu, Hv]^T$ and ${\cal H} = [{f F}, {f G}]$

$$\mathbf{U} = \begin{bmatrix} H \\ P_1 \\ P_2 \end{bmatrix}, \mathcal{L}(\mathbf{U}) = [\mathbf{S_b} + \mathbf{S_d} + \mathbf{S_f}]$$

with
$$\mathbf{P} = \begin{bmatrix} P_1 \\ P_2 \end{bmatrix} = H \begin{bmatrix} \frac{z_a^2}{2} \nabla (\nabla \cdot \mathbf{u}) + z_a \nabla (\nabla \cdot h\mathbf{u}) + \mathbf{u} \end{bmatrix}$$
 and

$$\mathbf{S_b} = \begin{bmatrix} 0 \\ -gHb_x \\ -gHb_y \end{bmatrix}, \ \mathbf{S_d} = \begin{bmatrix} -\psi_c \\ -u\psi_c + \psi_{M_x} \\ -v\psi_c + \psi_{M_y} \end{bmatrix}, \ \mathbf{S_f} = \begin{bmatrix} 0 \\ S_x^f + R_{b_x} \\ S_y^f + R_{b_y} \end{bmatrix}$$

Conclusions

Vector conservative form (cont.)

Introduction

$$\psi_c = \nabla \cdot \left[\left(\frac{z_a^2}{2} - \frac{h^2}{6} \right) h \nabla (\nabla \cdot \mathbf{u}) + \left(z_a + \frac{h}{2} \right) h \nabla (\nabla \cdot h \mathbf{u}) \right]$$

$$\psi_{\mathbf{M}} = \begin{bmatrix} \psi_{M_{x}} \\ \psi_{M_{y}} \end{bmatrix} = H_{t} \frac{z_{a}^{2}}{2} \nabla(\nabla \cdot \mathbf{u}) + H_{t} z_{a} \nabla(\nabla \cdot h\mathbf{u})$$

Conclusions

Vector conservative form (cont.)

$$\psi_c = \nabla \cdot \left[\left(\frac{z_a^2}{2} - \frac{h^2}{6} \right) h \nabla (\nabla \cdot \mathbf{u}) + \left(z_a + \frac{h}{2} \right) h \nabla (\nabla \cdot h \mathbf{u}) \right]$$

$$\psi_{\mathbf{M}} = \begin{bmatrix} \psi_{\mathsf{M}_{\mathsf{x}}} \\ \psi_{\mathsf{M}_{\mathsf{y}}} \end{bmatrix} = H_{t} \frac{z_{a}^{2}}{2} \nabla (\nabla \cdot \mathbf{u}) + H_{t} z_{a} \nabla (\nabla \cdot h \mathbf{u})$$

 $R_b = [R_{b_x}, R_{b_v}]^T = \text{parametrization of wave breaking characteristics}$ where:

$$R_{b_x} = \nabla \cdot \tilde{\mathbf{R}}_{b_x}$$
, where $\tilde{\mathbf{R}}_{b_x} = \begin{bmatrix} \nu(Hu)_x & \frac{\nu}{2} \left((Hu)_y + (Hv)_x \right) \end{bmatrix}^T$ and $R_{b_y} = \nabla \cdot \tilde{\mathbf{R}}_{b_y}$, where $\tilde{\mathbf{R}}_{b_y} = \begin{bmatrix} \frac{\nu}{2} \left((Hu)_y + (Hv)_x \right) & \nu(Hv)_y \end{bmatrix}^T$.

where $v = B\delta_b^2 H \eta_t$ is the eddy viscosity coefficient with 0 < B < 1 and δ_b is a mixing length coefficient.

- Advective (nonlinear) part and topography source term:
 Well-balanced FV formulation.
- Roe's approximate Riemann solver is used (Roe, 1981).
- Upwinding of the topography source term (Bermudez et al., 1994).
- High-order spatial accuracy: third-order MUSCL-type scheme (Barth, 1993).
- Satisfy the C-property (flow at rest) to higher spatial order: Addition
 of an extra term to bed upwinding (Hubbard and Garcia-Navarro, 2000
 and Delis and Nikolos, 2009).
- Special treatment of wet/dry fronts.
- Dispersion terms: consistent FV approximations based on gradient and divergence computations (Kazolea et al., 2012).

- Advective (nonlinear) part and topography source term:
 Well-balanced FV formulation.
- Roe's approximate Riemann solver is used (Roe, 1981).
- Upwinding of the topography source term (Bermudez et al., 1994).
- High-order spatial accuracy: third-order MUSCL-type scheme (Barth, 1993).
- Satisfy the C-property (flow at rest) to higher spatial order: Addition
 of an extra term to bed upwinding (Hubbard and Garcia-Navarro, 2000
 and Delis and Nikolos, 2009).
- Special treatment of wet/dry fronts.
- Dispersion terms: consistent FV approximations based on gradient and divergence computations (Kazolea et al., 2012).

Introduction

- Advective (nonlinear) part and topography source term:
 Well-balanced FV formulation.
- Roe's approximate Riemann solver is used (Roe, 1981).
- Upwinding of the topography source term (Bermudez et al., 1994).
- High-order spatial accuracy: third-order MUSCL-type scheme (Barth, 1993).
- Satisfy the C-property (flow at rest) to higher spatial order: Addition
 of an extra term to bed upwinding (Hubbard and Garcia-Navarro, 2000
 and Delis and Nikolos, 2009).
- Special treatment of wet/dry fronts.
- Dispersion terms: consistent FV approximations based on gradient and divergence computations (Kazolea et al., 2012).

- Advective (nonlinear) part and topography source term:
 Well-balanced FV formulation.
- Roe's approximate Riemann solver is used (Roe, 1981).
- Upwinding of the topography source term (Bermudez et al., 1994).
- High-order spatial accuracy: third-order MUSCL-type scheme (Barth, 1993).
- Satisfy the C-property (flow at rest) to higher spatial order: Addition
 of an extra term to bed upwinding (Hubbard and Garcia-Navarro, 2000
 and Delis and Nikolos, 2009).
- Special treatment of wet/dry fronts.
- Dispersion terms: consistent FV approximations based on gradient and divergence computations (Kazolea et al., 2012).

- Advective (nonlinear) part and topography source term:
 Well-balanced FV formulation.
- Roe's approximate Riemann solver is used (Roe, 1981).
- Upwinding of the topography source term (Bermudez et al., 1994).
- High-order spatial accuracy: third-order MUSCL-type scheme (Barth, 1993).
- Satisfy the C-property (flow at rest) to higher spatial order: Addition
 of an extra term to bed upwinding (Hubbard and Garcia-Navarro, 2000
 and Delis and Nikolos, 2009).
- Special treatment of wet/dry fronts.
- Dispersion terms: consistent FV approximations based on gradient and divergence computations (Kazolea et al., 2012).

- Advective (nonlinear) part and topography source term:
- Roe's approximate Riemann solver is used (Roe, 1981).
- Upwinding of the topography source term (Bermudez et al., 1994).
- High-order spatial accuracy: third-order MUSCL-type scheme (Barth, 1993).
- Satisfy the C-property (flow at rest) to higher spatial order: Addition
- Special treatment of wet/dry fronts.

Numerical Model: Spatial discretization

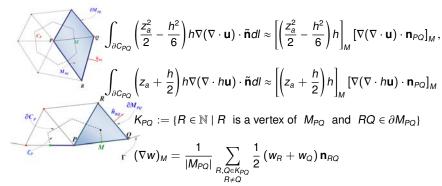
- Advective (nonlinear) part and topography source term:
 Well-balanced FV formulation.
- Roe's approximate Riemann solver is used (Roe, 1981).
- Upwinding of the topography source term (Bermudez et al., 1994).
- High-order spatial accuracy: third-order MUSCL-type scheme (Barth, 1993).
- Satisfy the C-property (flow at rest) to higher spatial order: Addition
 of an extra term to bed upwinding (Hubbard and Garcia-Navarro, 2000
 and Delis and Nikolos, 2009).
- Special treatment of wet/dry fronts.
- Dispersion terms: consistent FV approximations based on gradient and divergence computations (Kazolea et al., 2012).

Discretization of the dispersive terms (mass equation)

Integral averaging:

$$(\psi_c)_P = \frac{1}{|C_P|} \iint_{C_P} \nabla \cdot \left[\left(\frac{z_a^2}{2} - \frac{h^2}{6} \right) h \nabla (\nabla \cdot \mathbf{u}) + \left(z_a + \frac{h}{2} \right) h \nabla (\nabla \cdot h \mathbf{u}) \right] d\Omega$$

$$= \frac{1}{|C_P|} \sum_{Q \in K_P} \left\{ \int_{\partial C_{PQ}} \left[\left(\frac{z_a^2}{2} - \frac{h^2}{6} \right) h \nabla (\nabla \cdot \mathbf{u}) \right] \cdot \tilde{\mathbf{n}} dl + \int_{\partial C_{PQ}} \left[\left(z_a + \frac{h}{2} \right) h \nabla (\nabla \cdot h \mathbf{u}) \right] \cdot \tilde{\mathbf{n}} dl \right\}$$



Discretization of the dispersive terms (momentum equations)

Introduction

$$\frac{1}{|C_P|} \iint_{C_P} \left(-\mathbf{u} \psi_c + \psi_\mathbf{M} \right) d\Omega = -\frac{\mathbf{u}_P}{|C_P|} \iint_{C_P} \psi_c d\Omega + \frac{1}{|C_P|} \iint_{C_P} \psi_\mathbf{M} d\Omega.$$

The ψ_c is discretized as before and the second term takes the discrete form:

$$\begin{split} (\psi_{\mathbf{M}})_{P} &= \frac{1}{|C_{P}|} \iint_{C_{P}} \psi_{\mathbf{M}} d\Omega = \frac{1}{|C_{P}|} \iint_{C_{P}} H_{t} \frac{z_{a}^{2}}{2} \nabla(\nabla \cdot \mathbf{u}) + H_{t} z_{a} \nabla(\nabla \cdot h \mathbf{u}) d\Omega \\ &= \frac{1}{|C_{P}|} \iint_{C_{P}} H_{t} \frac{z_{a}^{2}}{2} \nabla(\nabla \cdot \mathbf{u}) d\Omega + \frac{1}{|C_{P}|} \iint_{C_{P}} H_{t} z_{a} \nabla(\nabla \cdot h \mathbf{u}) d\Omega \\ &\approx \left[H_{t} \frac{z_{a}^{2}}{2} \right]_{P} [\nabla(\nabla \cdot \mathbf{u})]_{P} + [H_{t} z_{a}]_{P} [\nabla(\nabla \cdot h \mathbf{u})]_{P}, \end{split}$$

Conclusions

Time integration

Introduction

Consider the semi-discrete scheme:

$$\frac{\partial \mathbf{U}_{P}}{\partial t} = \mathcal{L}(\mathbf{U})$$

Time Integration (match the order of truncation errors from dispersion terms):

Use 3rd order explicit Strong Stability-Preserving Runge-Kutta (SSP-RK):

$$\mathbf{U}_{P}^{(1)} = \mathbf{U}_{P}^{(n)} + \Delta t^{n} \mathcal{L} (\mathbf{U}^{(n)});
\mathbf{U}_{P}^{(2)} = \frac{3}{4} \mathbf{U}_{P}^{(n)} + \frac{1}{4} \mathbf{U}_{P}^{(1)} + \Delta t^{n} \frac{1}{4} \mathcal{L} (\mathbf{U}^{(1)});
\mathbf{U}_{P}^{(n+1)} = \frac{1}{3} \mathbf{U}_{P}^{(n)} + \frac{2}{3} \mathbf{U}_{P}^{(2)} + \Delta t^{n} \frac{2}{3} \mathcal{L} (\mathbf{U}^{(2)})$$

Time step Δt^n estimated by a CFL stability condition as

$$\Delta t^n = CFL \cdot \min_{P} \left(\frac{R_P}{\left(\sqrt{u^2 + v^2} + c\right)_P^n} \right)$$

Conclusions

Velocity field recovery

From new solution variables $\mathbf{P} = [P_1, P_2]^T$ At each step in the RK scheme a linear system $\mathbf{MV} = \mathbf{C}$ with $\mathbf{M} \in \mathbb{R}^{2N \times 2N}$ and $\mathbf{C} = [\mathbf{P}_1 \ \mathbf{P}_2 \cdots \ \mathbf{P}_N]^T$, has to be solved to obtain the velocities $\mathbf{V} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_N]^T$. Each two rows of the system read as

$$H_P^{(i)}\left[\frac{z_a^2}{2}\nabla(\nabla\cdot\mathbf{u})+z_a\nabla(\nabla\cdot h\mathbf{u})+\mathbf{u}\right]_P^{(i)}=\mathbf{P}_P^{(i)},\ i=1,2,n+1.$$

Velocity field recovery

Introduction

From new solution variables $\mathbf{P} = [P_1, P_2]^{\mathrm{T}}$

At each step in the RK scheme a linear system $\mathbf{MV} = \mathbf{C}$ with $\mathbf{M} \in \mathbb{R}^{2N \times 2N}$ and $\mathbf{C} = [\mathbf{P}_1 \ \mathbf{P}_2 \cdots \ \mathbf{P}_N]^T$, has to be solved to obtain the velocities $\mathbf{V} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_N]^T$. Each two rows of the system read as

$$H_P^{(i)} \left[\frac{z_a^2}{2} \nabla (\nabla \cdot \mathbf{u}) + z_a \nabla (\nabla \cdot h\mathbf{u}) + \mathbf{u} \right]_P^{(i)} = \mathbf{P}_P^{(i)}, \quad i = 1, 2, n + 1.$$

Important to (a) keep the unknown information needed at the minimum possible level (i.e neighboring nodes) and (b) exploit already computed geometrical information.

$$H_P\left[\frac{(z_a^2)_P}{2}\frac{1}{|C_P|}\sum_{Q\in K_P}(\nabla\cdot\mathbf{u})_M\mathbf{n}_{PQ}+\frac{(z_a)_P}{|C_P|}\sum_{Q\in K_P}(\nabla\cdot h\mathbf{u})_M\mathbf{n}_{PQ}+\mathbf{u}_P\right]=\mathbf{P}_P$$

Velocity field recovery

From new solution variables $\mathbf{P} = [P_1, P_2]^T$

At each step in the RK scheme a linear system $\mathbf{MV} = \mathbf{C}$ with $\mathbf{M} \in \mathbb{R}^{2N \times 2N}$ and $\mathbf{C} = [\mathbf{P}_1 \ \mathbf{P}_2 \cdots \ \mathbf{P}_N]^T$, has to be solved to obtain the velocities $\mathbf{V} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_N]^T$. Each two rows of the system read as

$$H_P^{(i)} \left[\frac{z_a^2}{2} \nabla (\nabla \cdot \mathbf{u}) + z_a \nabla (\nabla \cdot h\mathbf{u}) + \mathbf{u} \right]_P^{(i)} = \mathbf{P}_P^{(i)}, \quad i = 1, 2, n + 1.$$

Important to (a) keep the unknown information needed at the minimum possible level (i.e neighboring nodes) and (b) exploit already computed geometrical information.

$$H_{P}\left[\frac{(z_{a}^{2})_{P}}{2}\frac{1}{|C_{P}|}\sum_{Q\in\mathcal{K}_{P}}(\nabla\cdot\mathbf{u})_{M}\mathbf{n}_{PQ}+\frac{(z_{a})_{P}}{|C_{P}|}\sum_{Q\in\mathcal{K}_{P}}(\nabla\cdot\mathbf{h}\mathbf{u})_{M}\mathbf{n}_{PQ}+\mathbf{u}_{P}\right]=\mathbf{P}_{P}$$

$$\frac{(z_a^2)_P}{2|C_P|}\sum_{Q\in\mathcal{K}_P}\mathbf{A}_Q\mathbf{u}_Q^{} + \mathbf{A}_P\mathbf{u}_P^{} + \frac{(z_a)_P}{|C_P|}\sum_{Q\in\mathcal{K}_P}\mathbf{B}_Q\mathbf{u}_Q^{} + \mathbf{B}_P\mathbf{u}_P^{} + \mathbf{I}\mathbf{u}_P^{} = \frac{1}{H_P}\mathbf{P}_P, \ P=1\dots N$$

 The matrix M is sparse and structurally symmetric but is also mesh dependent.

- The matrix M is sparse and structurally symmetric but is also mesh dependent.
- Matrix M is stored in the compressed sparse row (CSR) format.

- The matrix M is sparse and structurally symmetric but is also mesh dependent.
- Matrix M is stored in the compressed sparse row (CSR) format.
- The **ILUT preconditioner** from SPARSKIT package is used.

- The matrix **M** is **sparse and structurally symmetric** but is also mesh dependent.
- Matrix M is stored in the compressed sparse row (CSR) format.
- The ILUT preconditioner from SPARSKIT package is used.
- The reverse Cuthill-McKee (RCM) algorithm is also employed to reorder the matrix elements as to minimize the matrix bandwidth.

- The matrix M is sparse and structurally symmetric but is also mesh dependent.
- Matrix M is stored in the compressed sparse row (CSR) format.
- The ILUT preconditioner from SPARSKIT package is used.
- The reverse Cuthill-McKee (RCM) algorithm is also employed to reorder the matrix elements as to minimize the matrix bandwidth.
- System is solved using Bi-Conjugate Gradient Stabilized method (BiCGStab), with tolerance 5 · 10⁻⁶

- The matrix M is sparse and structurally symmetric but is also mesh dependent.
- Matrix M is stored in the compressed sparse row (CSR) format.
- The ILUT preconditioner from SPARSKIT package is used.
- The reverse Cuthill-McKee (RCM) algorithm is also employed to reorder the matrix elements as to minimize the matrix bandwidth.
- System is solved using Bi-Conjugate Gradient Stabilized method (BiCGStab), with tolerance 5 · 10⁻⁶
- Convergence to the solution was obtained in one or two steps with the numerical solution for the velocities at the previous time step given as initial guess.

Boundary conditions and the internal source function

Introduction

• Wall (reflective) boundary condition: $\mathbf{u} \cdot \widetilde{\mathbf{n}} = 0$ for $\mathbf{x} \in \partial \Omega$ By conservation of mass (no loss or gain through the wall)

$$\frac{\partial}{\partial t} \iint_{\Omega} H d\Omega + \int_{\partial \Omega} \left[H \mathbf{u} + \left(\frac{z_a^2}{2} - \frac{h^2}{6} \right) h \nabla (\nabla \cdot \mathbf{u}) + \left(z_a + \frac{h}{2} \right) h \nabla (\nabla \cdot h \mathbf{u}) \right] \cdot \widetilde{\mathbf{n}} dl = 0$$

Define the normal boundary advective flux in weak form,

$$oldsymbol{\Phi}_{P,\Gamma} = \left[egin{array}{c} 0 \\ rac{1}{2}g(H^\star)^2 n_{P,1_X} \\ rac{1}{2}g(H^\star)^2 n_{P,1_Y} \end{array}
ight]$$
 by the method of characteristics

Introduction

$$\frac{\partial}{\partial t} \iint_{\Omega} H d\Omega + \int_{\partial \Omega} \left[H \mathbf{u} + \left(\frac{z_a^2}{2} - \frac{h^2}{6} \right) h \nabla (\nabla \cdot \mathbf{u}) + \left(z_a + \frac{h}{2} \right) h \nabla (\nabla \cdot h \mathbf{u}) \right] \cdot \widetilde{\mathbf{n}} dl = 0$$

Define the normal boundary advective flux in weak form,

$$oldsymbol{\Phi}_{P,\Gamma} = \left[egin{array}{c} 0 \ rac{1}{2}g(H^\star)^2 n_{P,1x} \ rac{1}{2}g(H^\star)^2 n_{P,1y} \end{array}
ight]$$
 by the method of characteristics

Absorbing boundaries: should dissipate the energy of incoming waves

Sponge layer is defined:
$$m(\mathbf{x}) = \sqrt{1 - \left(\frac{\mathbf{x} - d(\mathbf{x})}{L_s}\right)^2}$$
, $L \le L_s \le 1.5L$,

Conclusions

Introduction

Boundary conditions and the internal source function

• Wall (reflective) boundary condition: $\mathbf{u} \cdot \widetilde{\mathbf{n}} = 0$ for $\mathbf{x} \in \partial \Omega$ By conservation of mass (no loss or gain through the wall)

$$\frac{\partial}{\partial t} \iint_{\Omega} H d\Omega + \int_{\partial \Omega} \left[H \mathbf{u} + \left(\frac{z_a^2}{2} - \frac{h^2}{6} \right) h \nabla (\nabla \cdot \mathbf{u}) + \left(z_a + \frac{h}{2} \right) h \nabla (\nabla \cdot h \mathbf{u}) \right] \cdot \widetilde{\mathbf{n}} dl = 0$$

Define the normal boundary advective flux in weak form,

$$oldsymbol{\Phi}_{P,\Gamma} = \left[egin{array}{c} 0 \\ rac{1}{2}g(H^{\star})^2 n_{P,1x} \\ rac{1}{2}g(H^{\star})^2 n_{P,1y} \end{array}
ight]$$
 by the **method of characteristics**

Absorbing boundaries: should dissipate the energy of incoming waves

Sponge layer is defined:
$$m(\mathbf{x}) = \sqrt{1 - \left(\frac{\mathbf{x} - d(\mathbf{x})}{L_s}\right)^2}$$
, $L \le L_s \le 1.5L$,

Internal source function for regular waves (Wei et al., 1993) added to the mass equation

$$S(\mathbf{x},t) = D^* \exp(\gamma(x-x_s)^2) \sin(\lambda y - \omega t)$$

Wave breaking models

Introduction

Eddy viscosity wave breaking model

$$(\mathbf{R_b})_P = \frac{1}{|C_P|} \iint_{C_P} \mathbf{R_b} d\Omega = \frac{1}{|C_P|} \iint_{C_P} \begin{bmatrix} \nabla \cdot \tilde{\mathbf{R}}_{b_y} \\ \nabla \cdot \tilde{\mathbf{R}}_{b_x} \end{bmatrix} d\Omega$$
$$= \frac{1}{|C_P|} \int_{\partial C_{PQ}} \begin{bmatrix} \tilde{\mathbf{R}}_{b_x} \cdot \tilde{\mathbf{n}} \\ \tilde{\mathbf{R}}_{b_y} \cdot \tilde{\mathbf{n}} \end{bmatrix} dl \approx \frac{1}{|C_P|} \begin{bmatrix} \tilde{\mathbf{R}}_{b_x} \cdot \mathbf{n}_{PQ} \\ \tilde{\mathbf{R}}_{b_y} \cdot \mathbf{n}_{PQ} \end{bmatrix}_M$$

Eddy viscosity wave breaking model

$$(\mathbf{R_b})_P = \frac{1}{|C_P|} \iint_{C_P} \mathbf{R_b} d\Omega = \frac{1}{|C_P|} \iint_{C_P} \begin{bmatrix} \nabla \cdot \tilde{\mathbf{R}}_{b_y} \\ \nabla \cdot \tilde{\mathbf{R}}_{b_x} \end{bmatrix} d\Omega$$
$$= \frac{1}{|C_P|} \int_{\partial C_{PQ}} \begin{bmatrix} \tilde{\mathbf{R}}_{b_x} \cdot \tilde{\mathbf{n}} \\ \tilde{\mathbf{R}}_{b_y} \cdot \tilde{\mathbf{n}} \end{bmatrix} dl \approx \frac{1}{|C_P|} \begin{bmatrix} \tilde{\mathbf{R}}_{b_x} \cdot \mathbf{n}_{PQ} \\ \tilde{\mathbf{R}}_{b_y} \cdot \mathbf{n}_{PQ} \end{bmatrix}_M$$

Hybrid models

Introduction

- ullet Hybrid(ϵ) ightarrow BT degenerate into NSWE as dispersive terms become negligible.
 - Criterion: $\epsilon = \frac{A}{h} \le 0.8$
 - In post breaking region ϵ < 0.4 in order to switch NSWE/BT.

Wave breaking models

Eddy viscosity wave breaking model

$$(\mathbf{R_b})_P = \frac{1}{|C_P|} \iint_{C_P} \mathbf{R_b} d\Omega = \frac{1}{|C_P|} \iint_{C_P} \begin{bmatrix} \nabla \cdot \tilde{\mathbf{R}}_{b_y} \\ \nabla \cdot \tilde{\mathbf{R}}_{b_x} \end{bmatrix} d\Omega$$
$$= \frac{1}{|C_P|} \int_{\partial C_{PQ}} \begin{bmatrix} \tilde{\mathbf{R}}_{b_x} \cdot \tilde{\mathbf{n}} \\ \tilde{\mathbf{R}}_{b_y} \cdot \tilde{\mathbf{n}} \end{bmatrix} dl \approx \frac{1}{|C_P|} \begin{bmatrix} \tilde{\mathbf{R}}_{b_x} \cdot \mathbf{n}_{PQ} \\ \tilde{\mathbf{R}}_{b_y} \cdot \mathbf{n}_{PQ} \end{bmatrix}_M$$

Hybrid models

Introduction

- Hybrid(ϵ) \rightarrow BT degenerate into NSWE as dispersive terms become negligible.
 - Criterion: $\epsilon = \frac{A}{h} \le 0.8$
 - In post breaking region ϵ < 0.4 in order to switch NSWE/BT.
- New Hybrid
 - criteria: $\eta_t \ge \gamma \sqrt{gh}$, $\gamma \in [0.35, 0.65]$, $||\eta_x|| \ge tan(\phi_c)$.
 - Distinguish the different breaking waves.
 - Find non-breaking undular bores checking the Froude number.
 - Extend the computational region of the NSWE.

Not clear how the switching between the two models is implemented

- Not clear how the switching between the two models is implemented
- Discontinuity at the switching point BT/NSWE, causing spurious oscillations.

- Not clear how the switching between the two models is implemented
- Discontinuity at the switching point BT/NSWE, causing spurious oscillations.
- Matrix M can not be change.

- Not clear how the switching between the two models is implemented
- Discontinuity at the switching point BT/NSWE, causing spurious oscillations.
- Matrix M can not be change.
- Need of a "clever" implementation.

Introduction

Suppression of the dispersive terms

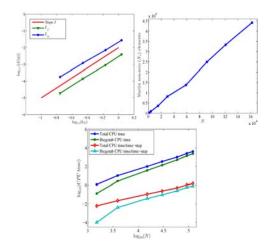
- Not clear how the **switching** between the two models is implemented
- **Discontinuity** at the switching point BT/NSWE, causing spurious **oscillations**.
- Matrix **M** can not be change.
- Need of a "clever" implementation.

Methodology

- 0. Starting with the solution vector \mathbf{U}_{P}^{n} , P = 1, ..., N, at time t^{n} ,
- 1. **H** is computed $\forall C_P$ using the BT model (named from now on \mathbf{H}_{RT}^{n+1}).
 - 1.1 If breaking is on for $N_{br} < N$ cells \Rightarrow additional solution vector $\mathbf{H}_{DT}^{n+1} \psi_c$ named $\mathbf{H}_{PT/SW}^{n+1}$.
- 2. \mathbf{P}_{BT}^{n+1} is computed $\forall C_P / \partial_t \mathbf{H}^{n+1} \approx \frac{\mathbf{H}_{BT}^{n+1} \mathbf{H}^n}{\Delta_t n+1}$ for the $\psi_{\mathbf{M}}$.
 - 2.1 N_{br} cells $\Rightarrow \mathbf{P}_{BT/SW}^{n+1} \rightarrow \mathbf{P}_{BT}^{n+1} \psi_c \psi_{\mathbf{M}} \Rightarrow [(Hu), (Hv)]^{n+1,T}$
- 3. MV = C, with $C = [P_1^{n+1}, P_2^{n+1}, \cdots, P_N^{n+1}]_{RT}^T \rightarrow u_{RT}^{n+1}$
- 4. Final solution: $\mathbf{H}_{RT/SW}^{n+1}$, $\mathbf{P}_{RT/SW}^{n+1}$, $\mathbf{u}_{RT/SW}^{n+1} \to \mathbf{u}_{RT}^{n+1}$ vector with its values at the breaking nodes replaced by those of \mathbf{u}_{SW}^{n+1} .

Numerical Results: Spatial accuracy

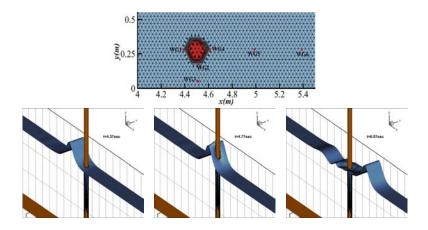
- Solitary wave: A/h = 0.1, $(x, y) \in [0, 300] \times [0, 5m]$
- Reference solution of N = 232,849 nodes



Solitary wave interaction with a vertical circular cylinder

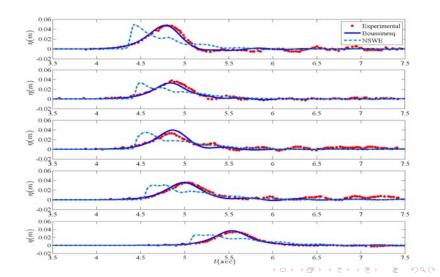
Area: $(x, y) = [-4, 10m] \times [0, 0.55m], A/h = 0.25, N = 10,609$

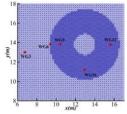
Introduction

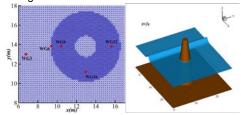


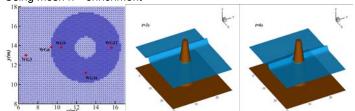
Solitary wave interaction with a vertical circular cylinder

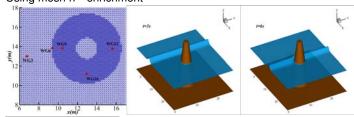
Wave Gauges:

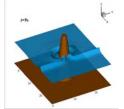


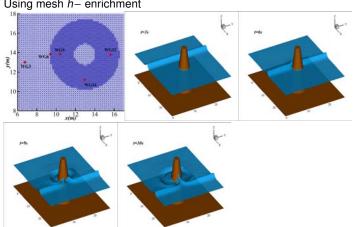


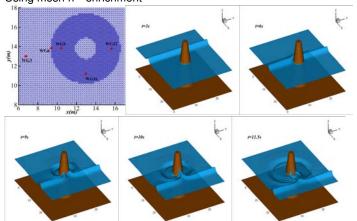




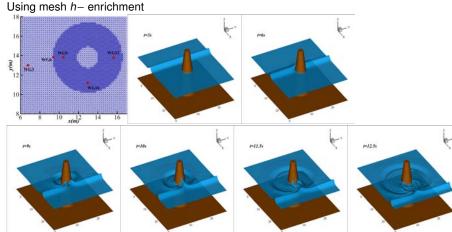






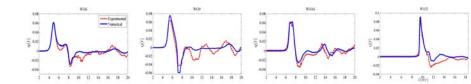


Area: $(x, y) = [-5, 28m] \times [0, 30m]$, A/h = 0.18, N = 52, 191, CFL = 0.8



Run-up of a solitary wave on a conical island (cont)

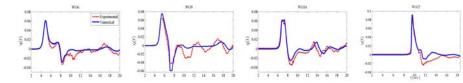
Time series of surface elevation at wave gauges around the island:



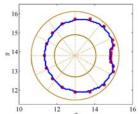
Run-up of a solitary wave on a conical island (cont)

Introduction

Time series of surface elevation at wave gauges around the island:



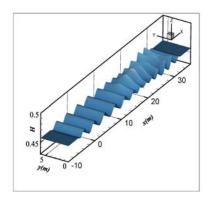
Experimental measurements and numerical runup around the island:



Simulation ~ 28min on a single 2.4GHz Intel Core 2 Quad Q6600 processor

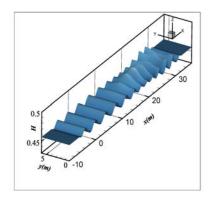
Wave propagation over a semicircular shoal (Whalin 1971)

$$T = 2.0s$$
, $h/L = 0.117$, $A/h = 0.0165$, $kh = 0.735$ and $S = 1.198$

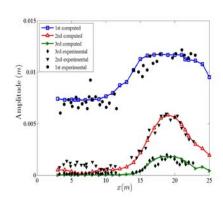


Wave propagation over a semicircular shoal (Whalin 1971)

T = 2.0s, h/L = 0.117, A/h = 0.0165, kh = 0.735 and S = 1.198

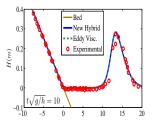


Introduction

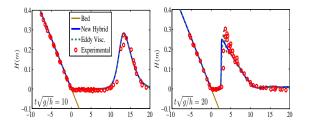


Free surface and spatial evolution of the 1st, 2nd and 3rd harmonic

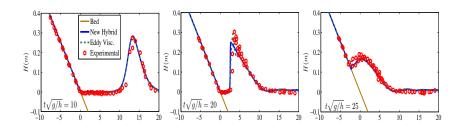
Area:
$$(x,y) = [-20,60m] \times [0,1m]$$
, $A/h = 0.28$, $N = 8,816$, $CFL = 0.4$, $n_m = 0.01$



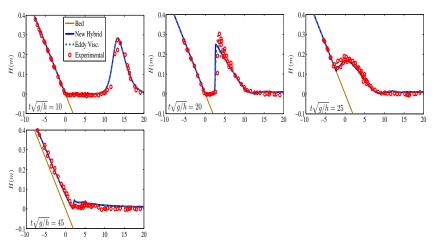
Area:
$$(x, y) = [-20, 60m] \times [0, 1m]$$
, $A/h = 0.28$, $N = 8,816$, $CFL = 0.4$, $n_m = 0.01$



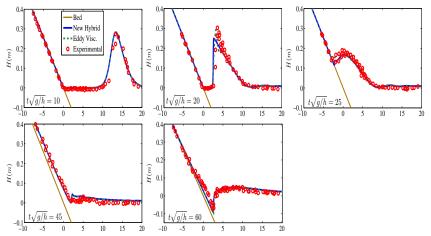
Area:
$$(x,y) = [-20,60m] \times [0,1m]$$
, $A/h = 0.28$, $N = 8,816$, $CFL = 0.4$, $n_m = 0.01$



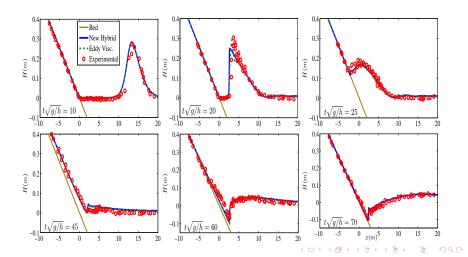
Area:
$$(x,y) = [-20,60m] \times [0,1m]$$
, $A/h = 0.28$, $N = 8,816$, $CFL = 0.4$, $n_m = 0.01$



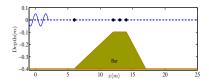
Area:
$$(x, y) = [-20, 60m] \times [0, 1m]$$
, $A/h = 0.28$, $N = 8,816$, $CFL = 0.4$, $n_m = 0.01$



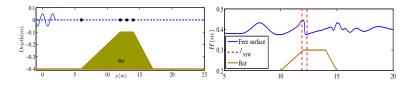
Area:
$$(x,y) = [-20,60m] \times [0,1m]$$
, $A/h = 0.28$, $N = 8,816$, $CFL = 0.4$, $n_m = 0.01$



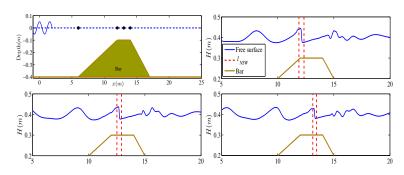
$$(x,y) = [-10,30m] \times [0,0.8m], H = 0.02m, T = 2.02s, N = 40,364$$



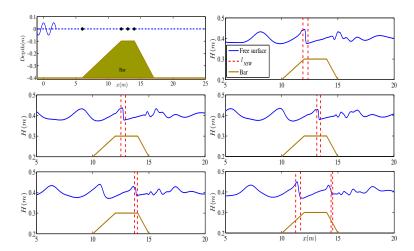
$$(x,y) = [-10,30m] \times [0,0.8m], H = 0.02m, T = 2.02s, N = 40,364$$



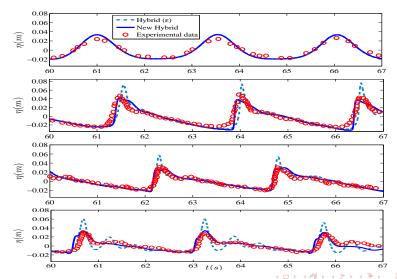
$$(x,y) = [-10,30m] \times [0,0.8m], H = 0.02m, T = 2.02s, N = 40,364$$



$$(x,y) = [-10,30m] \times [0,0.8m], H = 0.02m, T = 2.02s, N = 40,364$$



Wave gauges:



Area:
$$(x, y) = [0, 83m] \times [0, 1m]$$
, $A/h = 0.3$, $N = 10,900$, $n_m = 0.014$

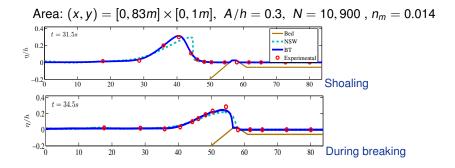
Output

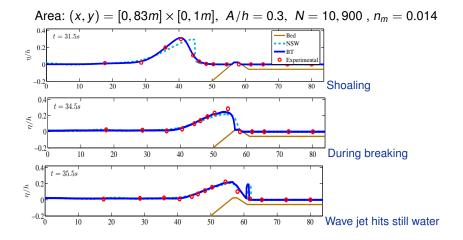
NSW
Experimental

Experimental

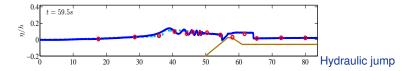
Experimental

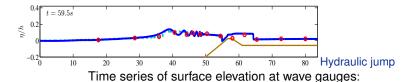
Shoaling

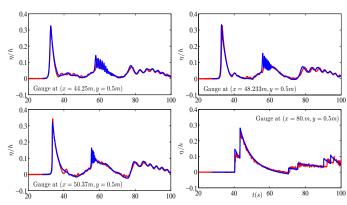




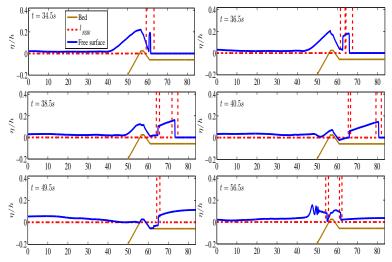






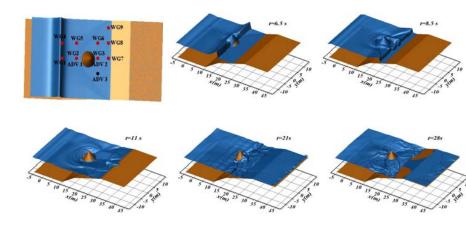


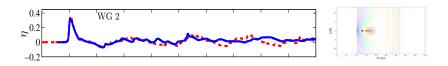
Spatial snapshots along the centerline:

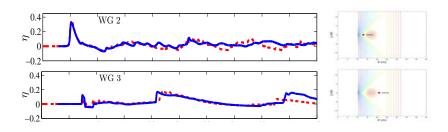


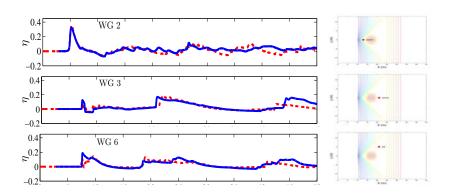
Introduction

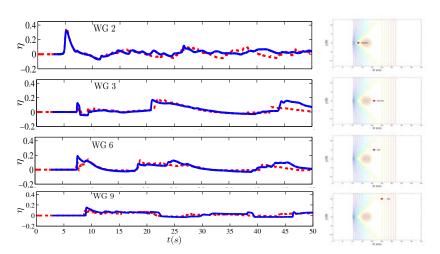
Area: $(x, y) = [0, 45m] \times [-13m, 13m]$, A/h = 0.5, N = 87, 961

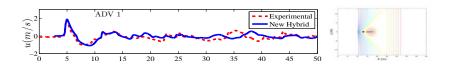


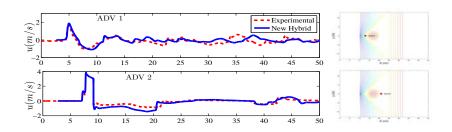


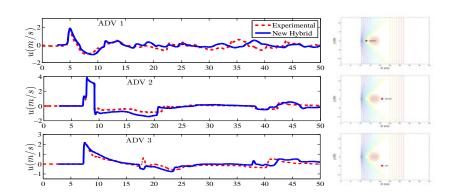


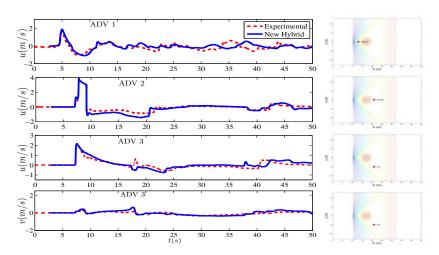












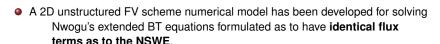
 A 2D unstructured FV scheme numerical model has been developed for solving Nwogu's extended BT equations formulated as to have identical flux terms as to the NSWE.

- A 2D unstructured FV scheme numerical model has been developed for solving Nwogu's extended BT equations formulated as to have identical flux terms as to the NSWE.
- Conservative formulation and higher-order FV scheme enhance the applicability of the model without altering its dispersion characteristics.

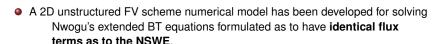
- A 2D unstructured FV scheme numerical model has been developed for solving Nwogu's extended BT equations formulated as to have identical flux terms as to the NSWE.
- Conservative formulation and higher-order FV scheme enhance the applicability of the model without altering its dispersion characteristics.
- The well-balanced topography and wet/dry front discretizations provided accurate conservative and stable wave propagation shoaling and run-up.

- A 2D unstructured FV scheme numerical model has been developed for solving Nwogu's extended BT equations formulated as to have identical flux terms as to the NSWE
- Conservative formulation and higher-order FV scheme enhance the applicability of the model without altering its dispersion characteristics.
- The well-balanced topography and wet/dry front discretizations provided accurate conservative and stable wave propagation shoaling and run-up.
- The edge-based structure adopted can provide computational efficiency, since most of the geometric quantities needed can be calculated in a pre-processing stage.

- A 2D unstructured FV scheme numerical model has been developed for solving Nwogu's extended BT equations formulated as to have identical flux terms as to the NSWE
- Conservative formulation and higher-order FV scheme enhance the applicability of the model without altering its dispersion characteristics.
- The well-balanced topography and wet/dry front discretizations provided accurate conservative and stable wave propagation shoaling and run-up.
- The edge-based structure adopted can provide computational efficiency, since most of the geometric quantities needed can be calculated in a pre-processing stage.
- Different type of wave breaking can be implemented. The New Hybrid model proved more stable and accurate than the others applied in this work.



- Conservative formulation and higher-order FV scheme enhance the applicability of the model without altering its dispersion characteristics.
- The well-balanced topography and wet/dry front discretizations provided accurate conservative and stable wave propagation shoaling and run-up.
- The edge-based structure adopted can provide computational efficiency, since most of the geometric quantities needed can be calculated in a pre-processing stage.
- Different type of wave breaking can be implemented. The New Hybrid model proved more stable and accurate than the others applied in this work.
- Relatively straight forward to extend existing NSWE codes that use (unstructured) FV schemes as to include dispersion characteristics for deeper water simulations.



- Conservative formulation and higher-order FV scheme enhance the applicability of the model without altering its dispersion characteristics.
- The well-balanced topography and wet/dry front discretizations provided accurate conservative and stable wave propagation shoaling and run-up.
- The edge-based structure adopted can provide computational efficiency, since most of the geometric quantities needed can be calculated in a pre-processing stage.
- Different type of wave breaking can be implemented. The New Hybrid model proved more stable and accurate than the others applied in this work.
- Relatively straight forward to extend existing NSWE codes that use (unstructured) FV schemes as to include dispersion characteristics for deeper water simulations.

References

- A. I. Delis, M. Kazolea, and N. A Kampanis. A robust high resolution finite volume scheme for the simulation of long waves over complex domain. *Int. J. Num. Meth. Fluids*, 56:419, 2008.
- A. I. Delis, I. A Nikolos, and M. Kazolea. Performance and comparison of cellcentered and node-centered unstructured finite volume discretizations for shallow water free surface flows. Arch. Comput. Methods Eng., 18:57, 2011.
- M. Kazolea and A. I. Delis. A well-balanced shock-capturing hybrid finite volume-finite difference numerical scheme for extended 1D Boussinesq models. *Applied Numerical Mathematics*, 67:167186, 2013.
- 4. M. Kazolea, A. I. Delis, I. A Nikolos, and C. E. Synolakis. An unstructured finite volume numerical scheme for extended 2D Boussinesq-type equations. *Coast. Eng.*, 69:4266, 2012.

Introduction

Thank you for your attention!!

