Context-aware Gaze Prediction applied to Game Level Design, Level-of-Detail and Stereo Manipulation

PhD Candidate

George Alex Koulieris

Computer Science Division, MUSIC Lab
Department of Electronic & Computer Engineering
Technical University of Crete

Supervisor
Assoc. Prof. Katerina Mania

Collaborators

Dr George Drettakis, Graphics and Design with Heterogeneous Content (GRAPHDECO), INRIA Sophia Antipolis, France Prof. Douglas W. Cunningham, Brandenburgische Technische Universitat Cottbus, Germany September 9th, 2015

Overview

Motivation

Problem Statement

Contributions

Background

Part 1: An Automated High-Level Saliency Predictor for Smart Game Balancing

Part 2: C-LOD: Context-aware Material Level-of-Detail applied to Mobile Graphics

Part 3: Gaze Prediction using Machine Learning for Dynamic Stereo Manipulation

Summary

Motivation

Problem Statement

Contributions

Background

Part 1: An Automated High-Level Saliency Predictor for Smart Game Balancing

Part 2: C-LOD: Context-aware Material Level-of-Detail applied to Mobile Graphics

Part 3: Gaze Prediction using Machine Learning for Dynamic Stereo Manipulation

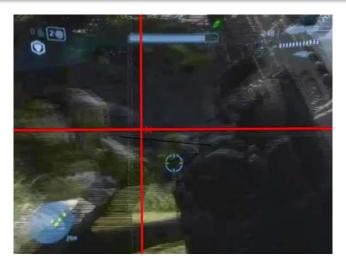
Summary

Gaze-aware applications Motivation

Predicting gaze over a synthetic scene

Knowledge of attended regions in a synthetic scene yields three classes of applications:

- Manipulating observers' gaze to fixate on selected 3D objects based on application goals
- Saving computational resources in regions that will not be attended by reducing rendering quality
- Applying gaze-aware visual effects, e.g. stereo manipulation or tone mapping



Gaze-aware applications Context

Game Level Design: Manipulating observers' gaze to fixate on selected 3D objects based on application goals

- Many game genres gameplays rely on a target detection task to solve riddles and advance gameplay
 - "Find the object"
- Object placement during level design correlates to search task completion time
 - Implicitly defining game difficulty
- Currently, designing game levels is a tedious manual operation (Pagulayan et al., 2003)
- An accurate gaze prediction model allows us to relocate objects estimated to attract visual attention,
 implicitly adjusting game difficulty

Gaze-aware applications Context

Level-of-Detail (LOD): Saving computational resources in regions that will not be attended by reducing rendering quality

- Higher rendering quality on areas expected to attract visual attention
- Rendering quality decreased for not attended scene areas
- Current attempts on gaze-aware LOD limited due to limited prediction accuracy (Cater et al., 2003)
- The accuracy of the gaze prediction model determines if quality reductions are perceived

LOD on Mobile Devices

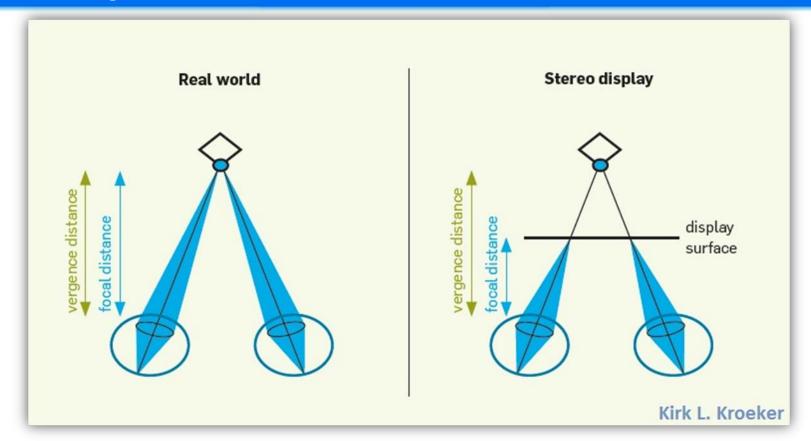
- Interest recently renewed due to explosive growth of the mobile market
- Prohibitive hardware restrictions of mobiles for complex effects

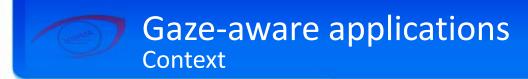
Gaze-aware applications Context

Comfortable Stereo: Applying gaze-aware visual effects

- Recent popularity of commodity Head Mounted Displays, e.g Oculus Rift
- Vergence-Accommodation Conflict

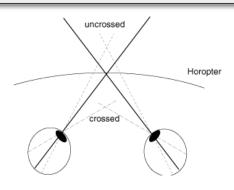
Gaze-aware applications Vergence-Accommodation Conflict





Comfortable Stereo: Applying gaze-aware visual effects

- Current stereo grading methods based on saliency estimates
 - Are offline (Lang et al., 2010)
 - Apply a global scene depth compression irrespective of attended objects (Oskam et al., 2011)
- Need for reduced discomfort and eye-fatigue without sacrificing depth (cardboarding)
- Relocate attended objects in the disparity comfort zone!



Motivation

Problem Statement

Contributions

Background

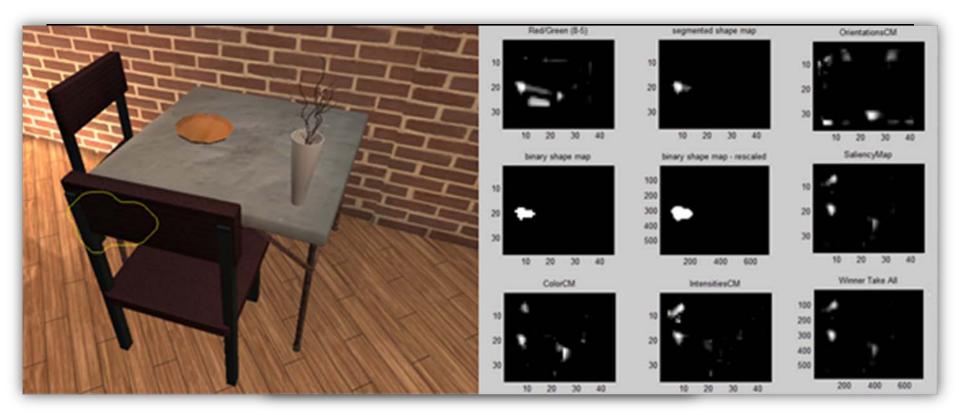
Part 1: An Automated High-Level Saliency Predictor for Smart Game Balancing

Part 2: C-LOD: Context-aware Material Level-of-Detail applied to Mobile Graphics

Part 3: Gaze Prediction using Machine Learning for Dynamic Stereo Manipulation

Summary

Gaze-aware applications Problem Statement



Gaze-aware applications Problem Statement

However, existing low level, image-based gaze prediction models often fail to predict gaze

- High-level properties such as scene semantics, attention to objects or task affect gaze fixations
- Object-context semantic relationships are NOT TAKEN into account by existing low level visual attention models
- It is a **challenging** problem to quantify qualitative object-context relationships

Motivation

Problem Statement

Contributions

Background

Part 1: An Automated High-Level Saliency Predictor for Smart Game Balancing

Part 2: C-LOD: Context-aware Material Level-of-Detail applied to Mobile Graphics

Part 3: Gaze Prediction using Machine Learning for Dynamic Stereo Manipulation

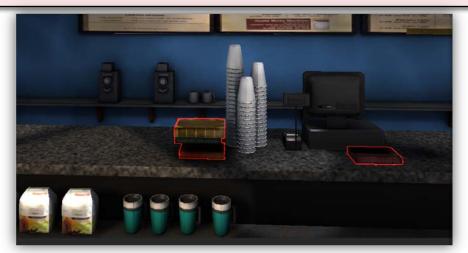
Summary

1. A physically plausible High Level Saliency Model (HLSM)

Encodes six hypotheses from perception and cognitive science into mathematical equations that describe

- Semantic inter-object relationships (e.g. contextual validity, object-context consistency)
- Intra-object positional properties (e.g, object rotation)
- Object topology in terms of inter-object distances and placement (e.g. object isolation)

We developed a computational model that can estimate fixation guidance based on context



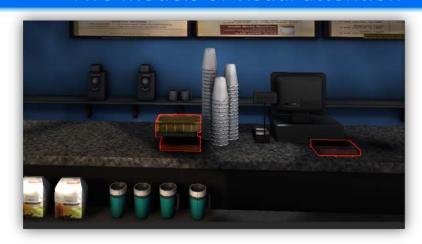
2. A Machine Learning (ML) based predictor

Our Decision Forests-based predictor

- Is automatic avoiding the need for embedding contextual information to objects
- Yields high prediction success rates, learning from ground truth eye tracking data
- Supports object motion in contrast to previous task-based and high level approaches

Contributions

Two models of visual attention

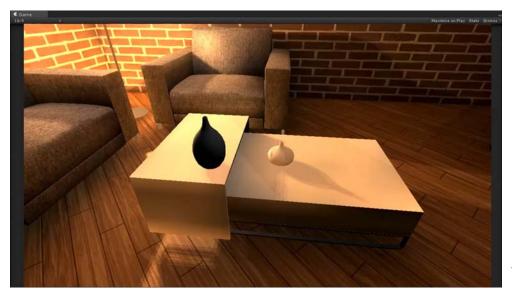


Each model specializes to a different class of applications

- The HLSM does not need eye tracking during model formation; needs semantic object tagging
- The ML-based model does not require object tagging; needs an eye tracker during model formation

3. A game balancing paradigm based on attention

- We develop a system based on the High Level Saliency Model to automatically predict gaze in real-time
- We validate the system's efficacy in adjusting game difficulty by altering object location based on predicted gaze



Contributions Contribution 4

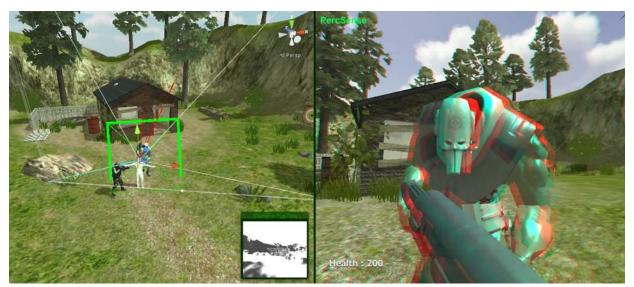
4. A Level-of-Detail method based on attention for mobile devices

- We present a perceptually optimized renderer for mobile platforms that reduces computation complexity and maintains a more stable frame rate by automatically removing perceptually non-important details
- Enables the usage of otherwise omitted complex effects such as subsurface scattering & complex refraction in low-power devices by applying them sparingly only in regions that are expected to be attended

5. A gaze-based stereo manipulation method

Our gaze-aware, localized stereo grading approach

- Provides a greater sense of scene depths than previous global depth compressing methods
- Maintains the same levels of viewing comfort when compared to the state-of-the-art



Overview

Motivation

Problem Statement

Contributions

Background

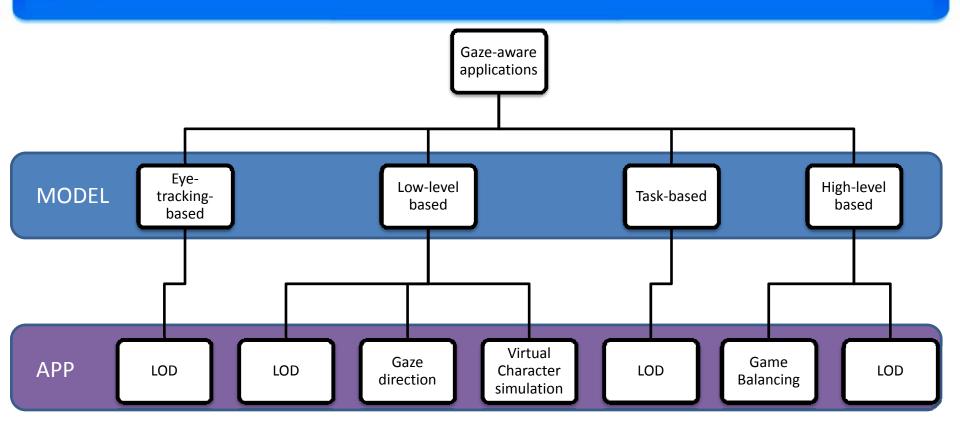
Part 1: An Automated High-Level Saliency Predictor for Smart Game Balancing

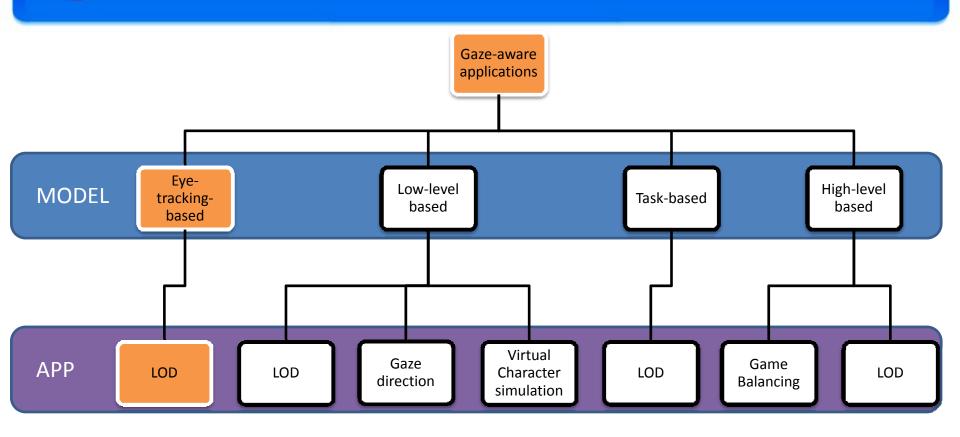
Part 2: C-LOD: Context-aware Material Level-of-Detail applied to Mobile Graphics

Part 3: Gaze Prediction using Machine Learning for Dynamic Stereo Manipulation

Summary





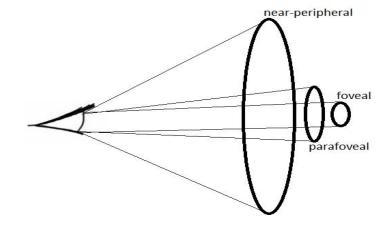


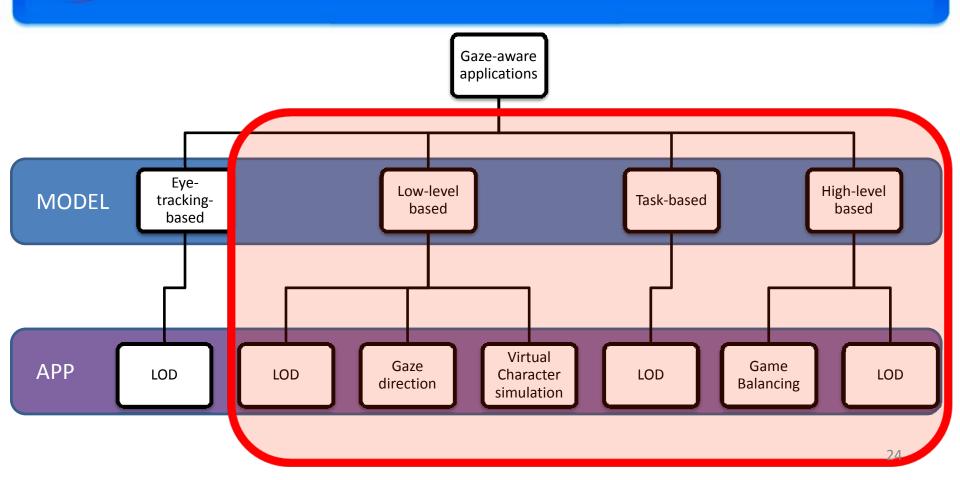
Eye-tracking based gaze prediction

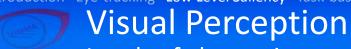
Level-of-Detail

However!

- Latency
- Rarely available for common applications







Levels of abstraction

Active extraction and manipulation of environmental information *Marr et al., 1982, Shipley et al., 2001*

- Low-level processes extract image regularities e.g. edges, color
- Mid-level processes combine regularities to form features e.g. object shapes
- High-level processes map mid-level features to meaning and semantics

The selection mechanism of the brain

Mid- and high-level processes have limited resources

- Focal attention selects a few low-level features that are likely to be important
- Low-level features e.g. edges may attract focal attention almost reflex-like

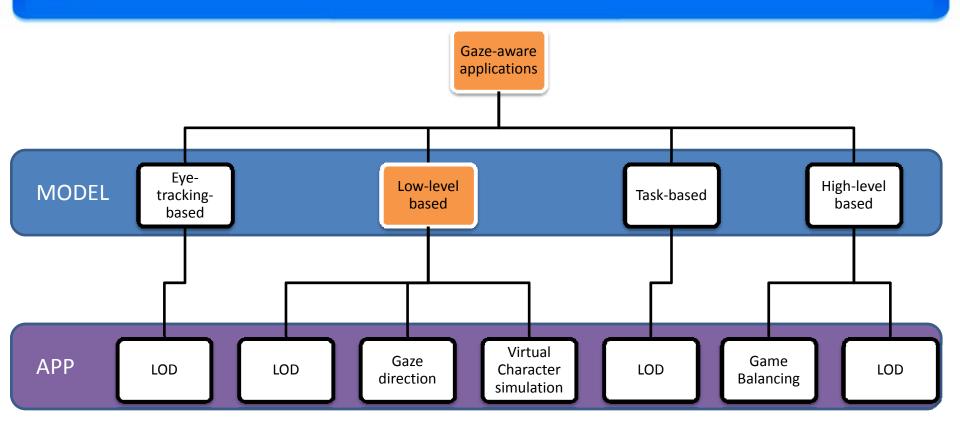
Mid- & high-level features and goal-oriented properties can direct Focal Attention

The contextual validity of an object's location affects visual search

✓ When looking for a chimney, usually we direct our gaze first to the rooftops

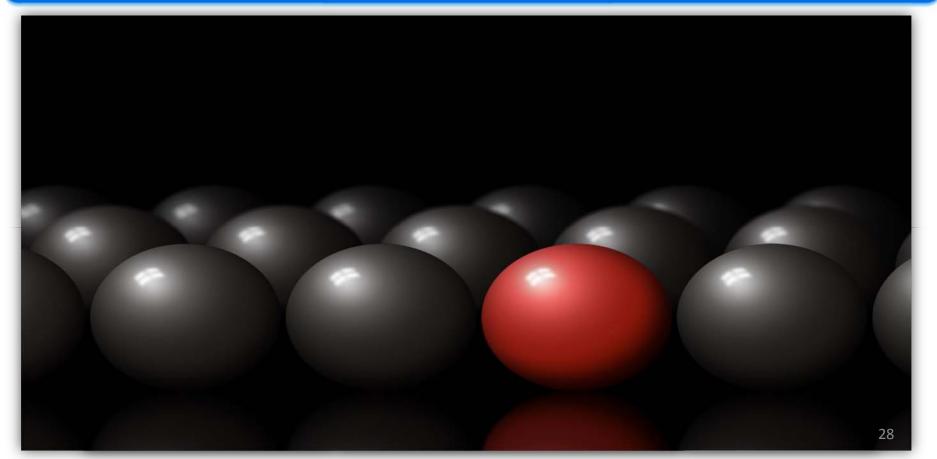
How are these features combined?

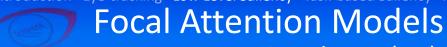
The relative contribution of low-, mid-, and high-level factors on attention is unknown



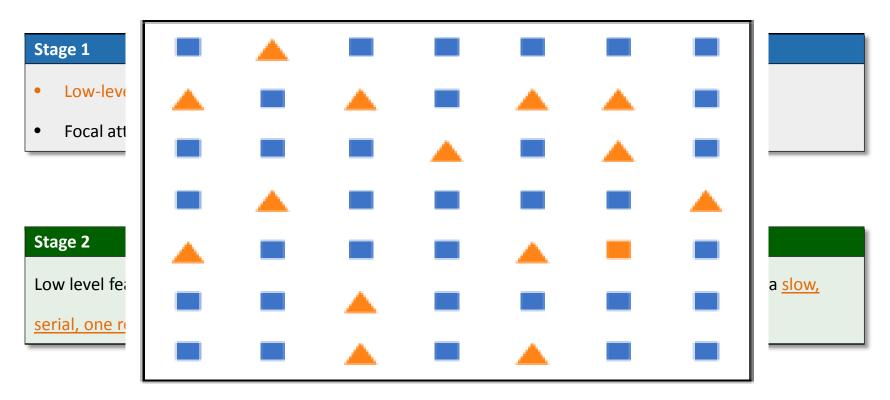
Introduction Eye-tracking Low Level Saliency Task-based Saliency High Level Saliency Applications of HL-Saliency Summary

Saliency based on Low-level image features



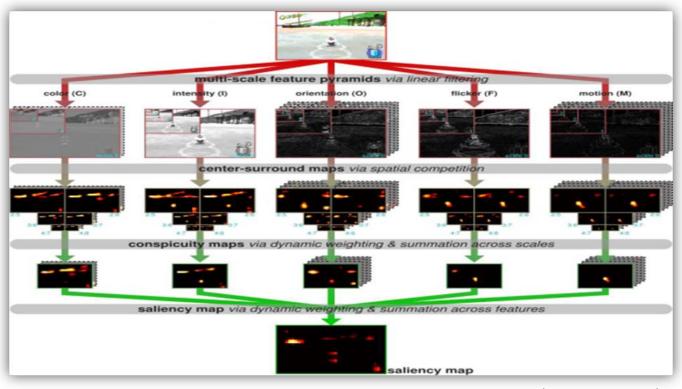


Feature Integration Theory (FIT): A two staged-model

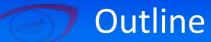


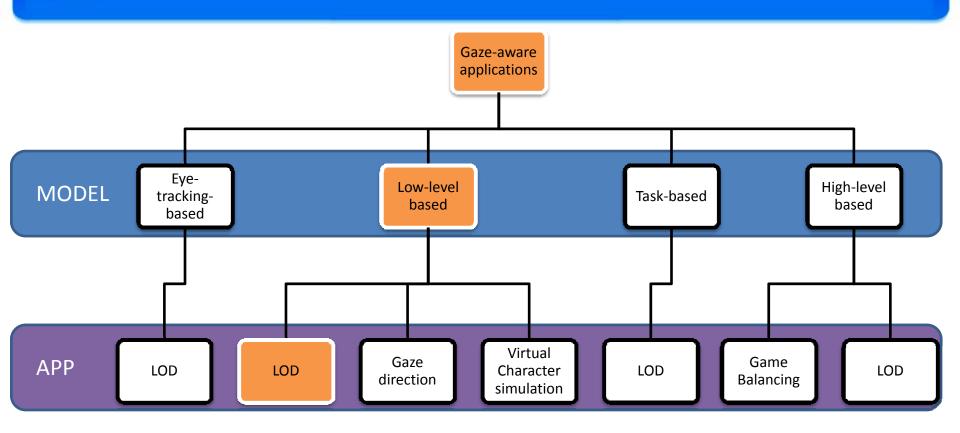
Feature Integration Theory

A computational model



(Itti et al., 1998)





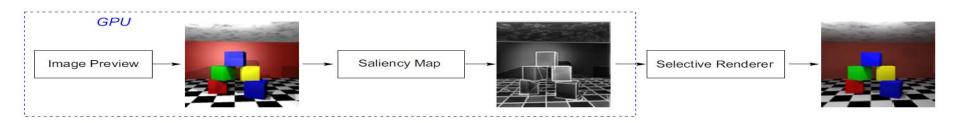
Low-level attention-aware applications

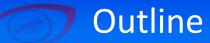
Level-of-Detail

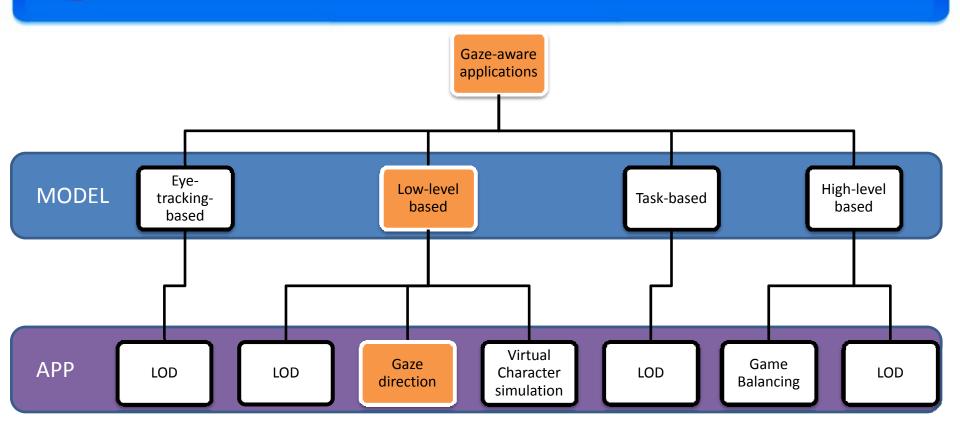
FIT-guided selective rendering often fails

Suffers from low prediction accuracy when

- A Task is being conducted
- High level semantic context properties drive attention **top-down**; e.g. when searching for an object



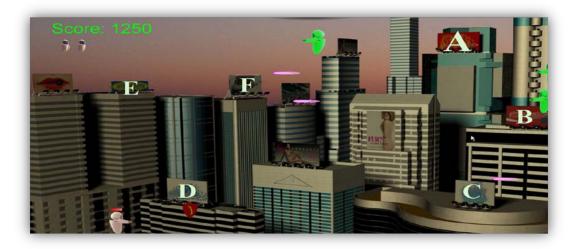


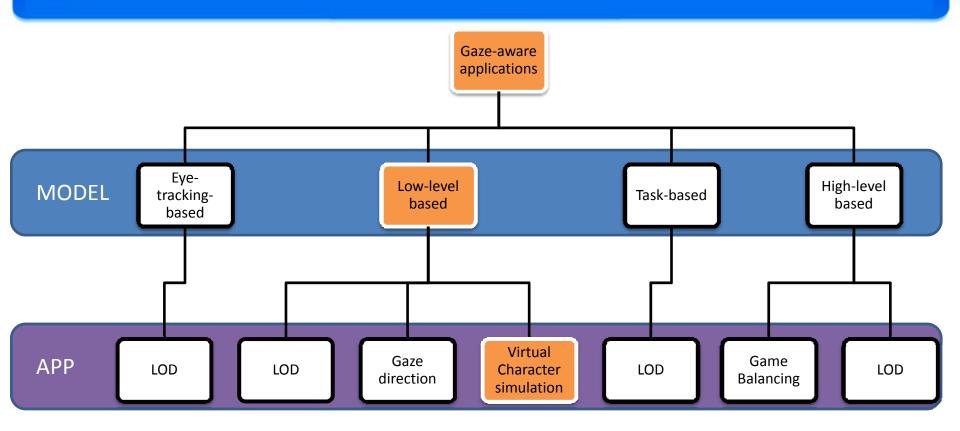


Low-level-based guiding principles

In-game advertising

- The modified item MUST share perceptual features with a target item
- Requires manual 3D-model modifications

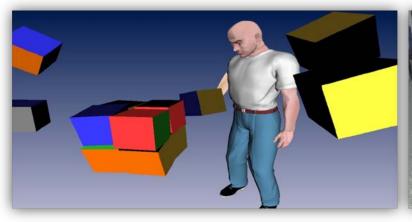


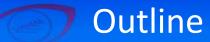


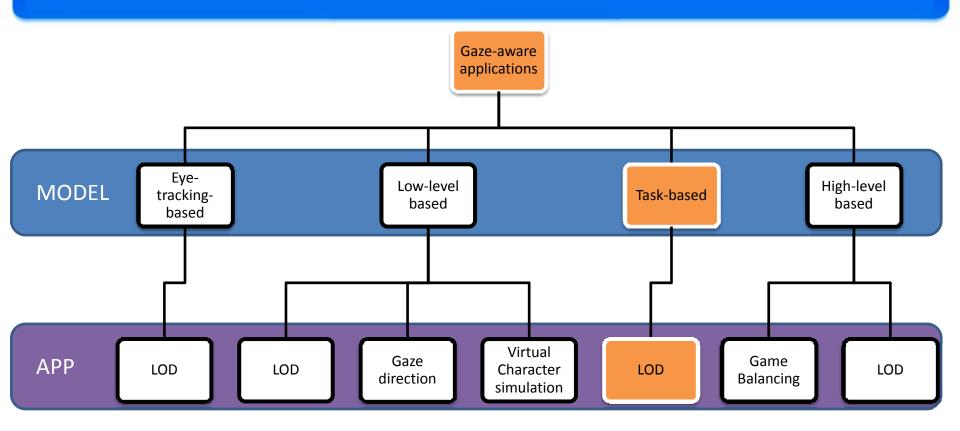
Characters and crowds

Simulating gaze behavior

- Limited to low-level salient objects
- Characters and crowds not responding naturally to tasks







Saliency based on task demands

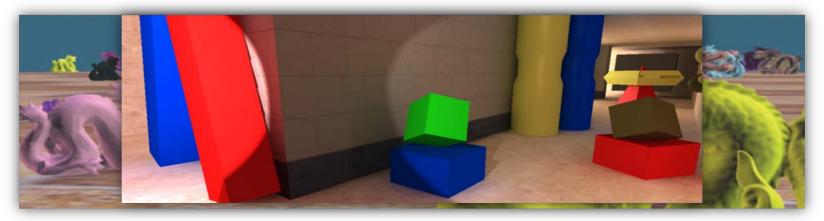
Task is predetermined

- Task has to be pre-determined
- Approach is limited since it requires labor intensive definition of task restrictions

Combining task-based methods and low level features

Joined low level & task-based methods

- Suffer from the issues of both models
 - Context-agnostic
 - Require manual definition of task restrictions



Thesis Contributions

Motivation

Problem Statement

Contributions

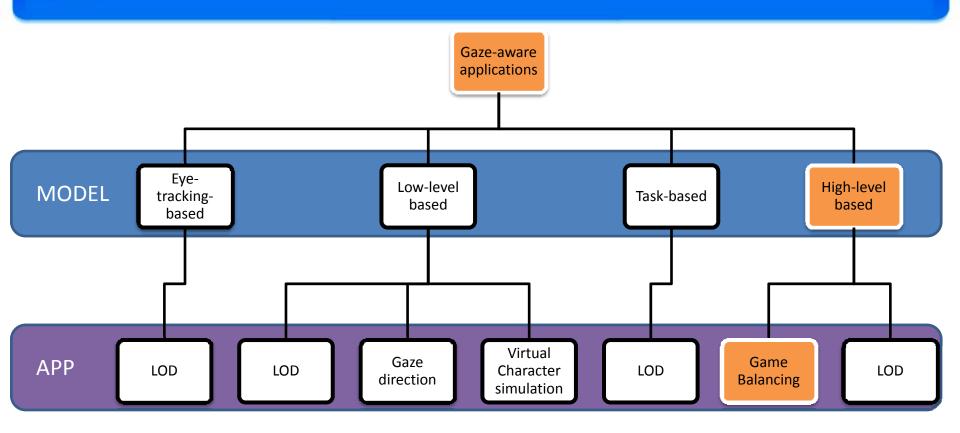
Background

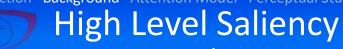
Part 1: An Automated High-Level Saliency Predictor for Smart Game Balancing

Part 2: C-LOD: Context-aware Material Level-of-Detail applied to Mobile Graphics

Part 3: Gaze Prediction using Machine Learning for Dynamic Stereo Manipulation

Summary





Mapping visual representations to meaning and semantics

A High Level Saliency Predictor

- Our goal is to define a computational model applicable to any context; a challenging task
- When attending a scene, recently acquired knowledge from attentional processing is combined with pre-existing knowledge about a context, e.g. "bedroom"

However!

Until recently a model that explicitly links in a physiologically plausible manner high level saliency

hypotheses with attention deployment was missing

Introduction Background Attention Model Perceptual Study HLSM Evaluation Summary

Scene Schemata Brewer & Treyens, 1981

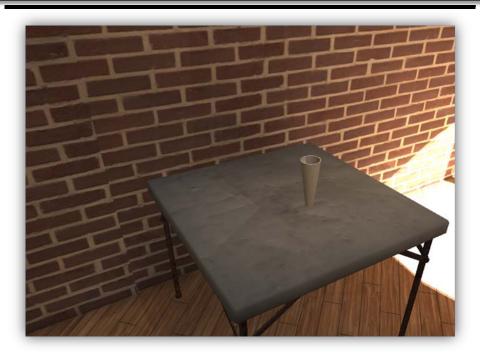
Out-of-context objects are salient

Introduction Background Attention Model Perceptual Study HLSM Evaluation Summary

Object Singletoness

Theeuwes & Godijn, 2002

Physically isolated objects pop out



Scene schemata & Object singletoness

VIDEO

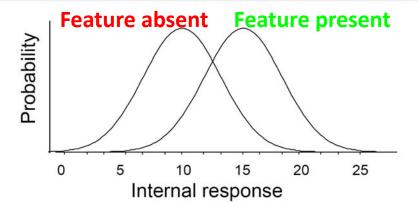
Attentional Processing

The Differential Weighting Model (DWM) Eckstein, 1998

A single stage model

- Attentional processing via Gaussian combination rules
- Firing behavior encoded in Bayesian priors
- For every pixel of every frame:

$$LR_{j,x,y,f} = \frac{l_{j,x,y,f}(\lambda_{j,x,y,f}|s)}{l_{j,x,y,f}(\lambda_{j,x,y,f}|n)} = exp\left(\frac{\lambda_{j,x,y,f}(d_j) - 0.(d_j^2)}{\sigma^2}\right)$$
(1)



Extending the Differential Weighting Model

Extending the Differential Weighting Model

Scene schema & physical isolation sensory units

High Level Sensory Units

We extended the original DWM equations to describe two novel high-level sensory units tuned to:

- Schema inconsistencies
- Singleton state of objects

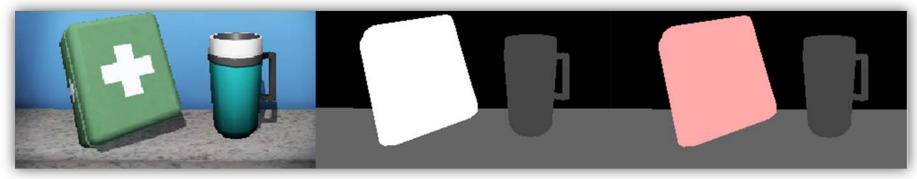
Extending the Differential Weighting Model

Scene schema & physical isolation sensory units

Averaging

We average the components using weights obtained from perceptual studies exploring the effect of High

Level hypotheses on task completion time



Viewport Likelihood ratios Saliency

Obtaining experimental data during gameplay

Motivation

We conducted three experiments for three reasons:

- Effect of scene schemata and singletons in VEs unknown
- Empirical classification of objects in scene schemata
- Extension of the DWM requires weighting factors for the two hypotheses

Experiment 1: Classifying objects into schemata

- Empirical classification of scene objects in relation to their surroundings
- 50 objects assessed
- 21 people rated objects using a 7-point Likert scale
 - "How likely for each item is to appear in a given scene?"

Experiments 2 & 3

Experiments 2 & 3: Determining the effect of Semantic and Physical Context on task completion time

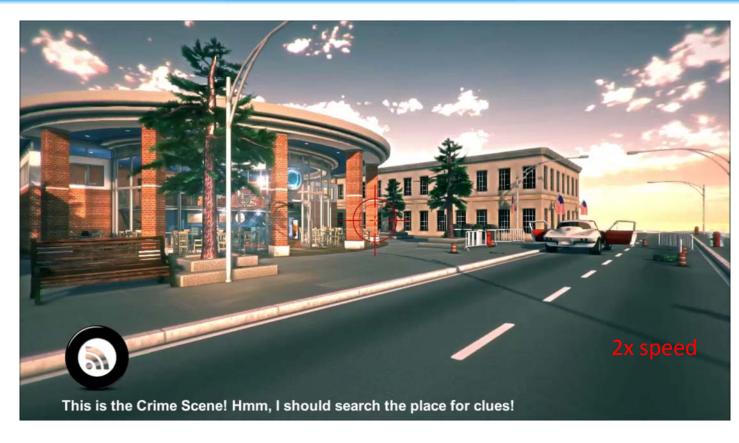
- Effect of physical and semantic manipulations on task completion time
- Inspired by a real Adventure game
- Search task (Exp. 2): Participants knew exactly what they were searching for
- Non-Search task (Exp. 3): Participants did not know what they were searching for; free exploration of the environment

Experiments 2 & 3

Stimuli

- Factorial combination of factors 4 conditions generated 2 Tasks
 - 1. Consistent/Compound
 - 2. Inconsistent/Compound
 - 3. Consistent/Singleton
 - 4. Inconsistent/Singleton
- 80 people, 10/condition

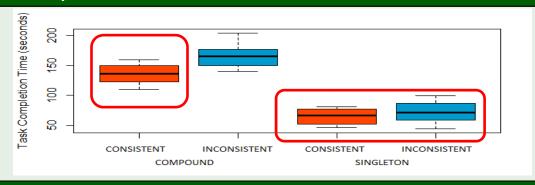
Sample Search task



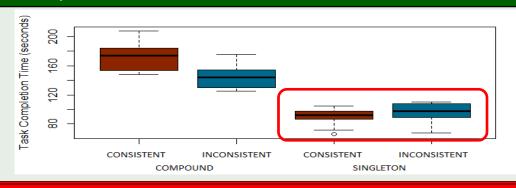
VIDEO

Results

Experiment 2: Task completion time distribution in a Search task

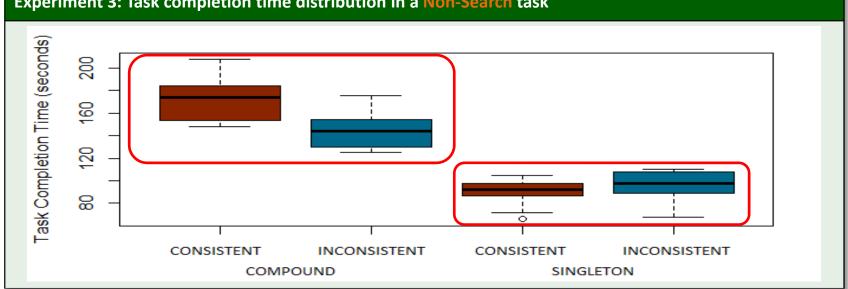


Experiment 3: Task completion time distribution in a Non-Search task



Perceptual Study Results

Experiment 3: Task completion time distribution in a Non-Search task



In a Non-Search task, consistency

- Increased task completion time for compound objects
- Decreased task completion time for singleton objects.

Weight Generation via General Linear Modeling

- We subjected the completion times to a Multiple Linear Regression (MLR) analysis
- Generate a quantitative model of how the different experimental factors affect performance
 - Also indicates the relative importance of each factor

Table I The Regression Coefficients and Their Significance on the Overall Model, for the Case of a Search Task

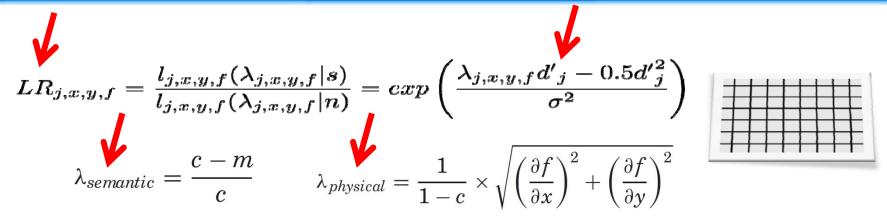
Coefficients	Estimate Time	<i>p</i> -value
Intercept	158.962	< 0.0001
+Singleton placement	-81.309	< 0.0001
+Consistent placement	-18.381	0.003
+Joint Term	22.190	0.055

Table II The Regression Coefficients and Their Significance on the Overall Model, for the Case of a Nonsearch Task

Coefficients	Estimate Time	<i>p</i> -value
Intercept	153.008	< 0.0001
+Singleton placement	-67.111	< 0.0001
+Consistent placement	11.944	0.039
+Joint Term	-32.407	0.025

HLSM: The High Level Saliency Model

GPU based implementation



Implementation - Stage 1

- Compares the scene schema of each object against the scene schemata of the objects surrounding it
- Estimates the number of neighbors for each examined object + available image depth information

Introduction Background Attention Model Perceptual Study HLSM Evaluation Summary

HLSM: The High Level Saliency Model

GPU based implementation

Implementati

- Runs on a
- Highlights

HLSM: The High Level Saliency Model

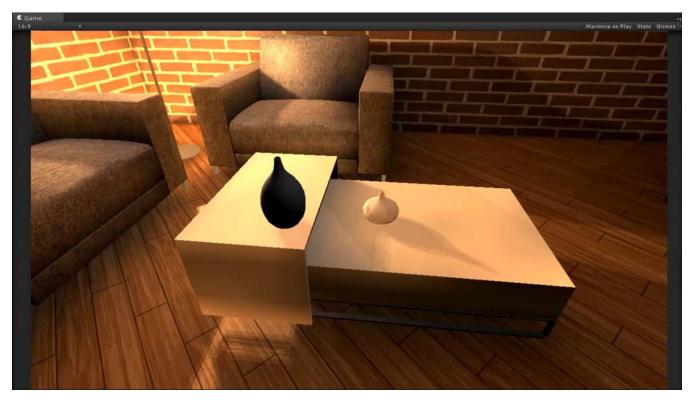
Game Balancing

Game Level Editing

- Looking for an object is a common task in (Action-)Adventure video games
- Plot-critical objects are placed in selected locations to ease or burden the player
- Maintain challenge via Game Balancing
- Aid game level designer to identify object saliency depending on location

HLSM: The High Level Saliency Model Perceptual Study HLSM Evaluation Summary HLSM: The High Level Saliency Model

Saliency Detection



VIDEO

Introduction Background Attention Model Perceptual Study HLSM Evaluation Summary

Evaluation of Game Level Editing

Experiments 4 & 5: Evaluation of the implementation

Evaluation of the High Level Saliency Model

Evaluate the efficiency of our model in predicting attention deployment by

- Examining its effect on task completion time
- Acquiring eye-tracking data

Evaluation of Game Level Editing

Experiments 4 & 5: Evaluation of the implementation

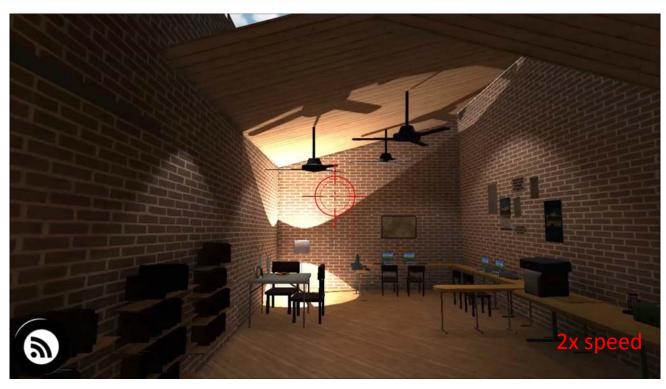
Design of the Game Balancing evaluation experiment

- Game Levels were designed with the HLSM system
- Four game levels
 - 1. Easy/Search task
 - 2. Hard/Search task
 - 3. Easy/Non-Search task
 - 4. Hard/Non-Search task
- Three objects in quest for all levels
- Used the already classified objects of Experiment 1
- 40 participants, 10/condition

Introduction Background Attention Model Perceptual Study HLSM Evaluation Summary

Evaluation of Game Level Editing

Footage



VIDEO

Evaluation of Game Level Editing

Completion time & Eye-tracking data Analysis

Completion time Analysis

- Both tasks completion times were reduced for the easy tasks vs the hard tasks
- Consistent with analysis of Experiments 2 & 3

Eye-tracking data Analysis

Clear influence of both context consistency and physical isolation in attention deployment

Evaluation of Game Level Editing

Eye-tracking Data Heat maps

Aggregated fixations over raw eye data from all participants and visual angles

Search task: Spectacles **Non-Search task:** Items for a car trip

Heat map analysis

- In a Search task eye gaze is directed to consistent object locations
- In a Non-Search task the eye scan pattern spans over the entire scene

Conclusion

- Successful prediction of salient objects identified as non-salient in terms of low level features
- We validated our model's performance via eye-tracking
- Implicitly adjust game level difficulty by manipulating object topology

Limitations

Only two contextual factors are integrated in this model; more can be found in the cognitive psychology

literature

Publications

Koulieris, G.A., Drettakis, G., Cunningham, D., Mania, K. (2014, September). An Automated High Level Saliency Predictor for Smart Game Balancing. ACM Transactions on Applied Perception (TAP) 11, 4, Article 17, 21 pages.

Koulieris, G.A., Drettakis, G., Cunningham, D., Mania, K. (2014, July). High level saliency prediction for smart game balancing. In ACM SIGGRAPH 2014 Talks, p. 73.

Motivation

Problem Statement

Contributions

Background

Part 1: An Automated High-Level Saliency Predictor for Smart Game Balancing

Part 2: C-LOD: Context-aware Material Level-of-Detail applied to Mobile Graphics

Part 3: Gaze Prediction using Machine Learning for Dynamic Stereo Manipulation

Summary