Joint Resource Allocation and Routing in Wireless Networks via Convex Approximation Techniques

Evangelia Matskani

Advisor: Prof. Nikos Sidiropoulos

Telecommunications Division Department of Electronic & Computer Engineering Technical University of Crete

June 15th, 2012

Outline

- Convex Approximation Algorithms for Back-Pressure Power Control
 - Back-pressure power control problem (BPPC)
 - NP-hardness
 - Successive convex approximation strategy
 - Custom adaptive algorithms
 - Simulation results
 - Concluding remarks
- Distributed Back-Pressure Power Control for Wireless Multi-hop Networks
 - Distributed implementation of core step of S.A. to BPPC
 - Distributed S.A. Algorithms for BPPC
 - Distributed WMMSE-based algorithms for BPPC
 - Adaptive distributed solutions
 - Simulation results
 - Concluding remarks

Shortest path vs. dynamic back-pressure

SP

- DP: BF, FW, ...
- Distributed ✓
- Must know arrival rate
- Quasi-static, very slow to adapt to
 - changing arrivals/load
 - availability/failure
 - fading/interference patterns
- Claim: Low delay (shortest path)
- ... but only at low system loads

BP [Tassiulas '92]

- One-hop differential backlog
- Distributed ✓ Lightweight ✓
- Auto-adapts ✓
- Highly dynamic, agile √
- Claim: maximal stable throughput (all paths)
- ... but delay can be large U(load), $\emptyset \rightarrow rand walk!$

Back-pressure routing

- Favors links with low back-pressure (hence name)
- Backtracking / looping possible!
- Local communication, trivial computation

Back-pressure routing

- Multiple destinations, commodities?
 - multiple queues per node
 - (max diff backlog) winner-takes-all per link
- Wireline: local communication, trivial computation
- Wireless?
- Broadcast medium: interference
- Link rates depend on transmission scheduling, power of other links
- Through appropriate scheduling, power control ...
- obtain 'favorable' topology for throughput maximization

Back-pressure power control

SINR

$$\gamma_{\ell} = \frac{G_{\ell\ell} p_{\ell}}{\sum_{k \in \mathcal{L}, k \neq \ell} G_{k\ell} p_k + V_{\ell}}$$

Link capacity

$$c_{\ell} = \log(1 + \gamma_{\ell})$$

BPPC

$$\max_{\{p_\ell\}_{\ell\in\mathcal{L}}} \sum_{\ell\in\mathcal{L}} D_\ell(t) c_\ell$$

s.t.
$$0 \le \sum_{\ell: \text{Tx}(\ell) = i} p_{\ell} \le P_{i}, \forall i \in \mathcal{N}$$

 $0 < p_{\ell} < P_{\ell}, \ell \in \mathcal{L}$

Diff backlog link $\ell = (i \rightarrow j)$ @ time t

$$D_{\ell}(t) := \left\{ \begin{array}{ll} \max\{0, W_i(t) - W_j(t)\}, & j \neq N \\ W_i(t), & j = N. \end{array} \right.$$

 \mathcal{F} flows: $D_{\ell}(t) := \max_{f \in \mathcal{F}} D_{\ell}^{(f)}(t)$

Back-pressure power control

BPPC

$$\max_{\{p_\ell\}_{\ell\in\mathcal{L}}} \sum_{\ell\in\mathcal{L}} D_\ell(t) c_\ell$$

s.t.
$$0 \le \sum_{\ell: Tx(\ell) = i} p_{\ell} \le P_{i}, \forall i \in \mathcal{N}$$

 $0 < p_{\ell} < P_{\ell}, \ell \in \mathcal{L}$

• complexity?

[Tassiulas et al, '92 \rightarrow]

- Max stable throughput
 ✓
- Backbone behind modern NUM
- Core problem in wireless networking

Reminiscent of ...

DSL: sum-rate maximization

Single-hop DSL

- Listen-while-talk ✓
- Dedicated (Tx,Rx)
- Free choice of $G_{k,\ell}$'s
- NP-hard [Luo, Zhang]

BPPC

Multi-hop network

- No listen-while-talk X
- Shared Tx, $Rx \Rightarrow$
- Restricted $G_{k,\ell}$'s, e.g.: k, ℓ depart from $i \to G_{k,\ell} = G_{\ell,\ell}$, $G_{\ell,k} = G_{k,k}$
- NP-hard?

Peel off

Generic backlogs Choosing backlogs

 \bullet Backlog reduction \to BPPC contains DSL \to also NP-hard

$DSL \rightarrow Multi-hop$ network optimization

- Can reuse tools from DSL
- In particular, lower approximation algorithms:
 - High SINR $\rightarrow (\gamma_{\ell} \gg 1) \rightarrow \log(\gamma_{\ell}) \approx \log(1 + \gamma_{\ell}) \rightarrow \text{Geometric Programming}$
 - Successive approximation from below: SCALE [Papandriopoulos and Evans, 2006]
 - Uses

$$\alpha \log(z) + \beta \le \log(1+z) \text{ for } \begin{cases} \alpha = \frac{z_o}{1+z_o} \\ \beta = \log(1+z_o) - \frac{z_o}{1+z_o} \log(z_o) \end{cases}$$

tight at z_o ; $\rightarrow \log(z) < \log(1+z)$ as $z_o \rightarrow \infty$

- Start from high SINR ($\alpha = 1, \beta = 0$), tighten bound at interim solution
- Successive Convex Approximation Approach:
 - $\mathbf{p}(t) \to \text{new } \alpha_{\ell}(t), \beta_{\ell}(t) \text{ at } z_0 = \gamma_{\ell}(\mathbf{p}(t)), \forall \ell \in \mathcal{L} \to \text{new } \mathbf{p}(t), \forall t$
- Majorization

Key difference with DSL

- BPPC problem must be solved repeatedly for every slot
- Batch algorithms: prohibitive complexity
- Need adaptive, lightweight solutions (to the extent possible)
- Built custom interior point algorithms
- Normally, one would init using solution of previous slot; take refinement step
- Doesn't work ...
- Why?

Proper warm-start

- No listen-while-talk, shared Tx/Rx
- Push-pull 'wave' propagation
- Solution from previous slot very different from one for present slot
- Even going back a few slots
- Fixed/slowly varying ph. l. propagation conditions
- Deterministic fixed-rate (random but bounded) arrivals
- Quasi-periodic behavior emerges (stable setups) return to one already visited state
- Idea: hold record of solutions for W previous slots. W > upper bound on period
- W evaluations of present objective function (cheap!)
- Pick the best to warm-start present slot
- Needs few IP steps to converge

Adaptive Successive Convex Approximation

- ② For $t=1 \to \text{random } \tilde{\mathbf{p}}_o(t)$ satisfying log-power constraints; else for $t \in [2, W]$ set:

$$\tilde{\mathbf{p}}_o(t) = \arg\max_{\tilde{\mathbf{p}} \in \{\tilde{\mathbf{p}}(1), \dots, \tilde{\mathbf{p}}(t-1)\}} f(\tilde{\mathbf{p}})$$

$$f(\tilde{\mathbf{p}}) := \sum_{\ell=1}^{L} D_{\ell}(t) \left(\alpha_{\ell} \left(\tilde{G}_{\ell\ell} + \tilde{p}_{\ell} - \log \left(\sum_{\substack{k=1\\k \neq \ell}}^{L} e^{\tilde{G}_{k\ell} + \tilde{p}_{k}} + e^{\tilde{V}_{\ell}} \right) \right) + \beta_{\ell} \right)$$

with α_{ℓ} , β_{ℓ} , $\forall \ell \in \mathcal{L}$, updated $\forall \ \tilde{\boldsymbol{p}} \in \{\tilde{\mathbf{p}}(1), \dots, \tilde{\mathbf{p}}(t-1)\}$, else $(t \geq W+1)$ set:

$$\tilde{\mathbf{p}}_o(t) = \arg \max_{\tilde{\mathbf{p}} \in \{\tilde{\mathbf{p}}(t-W), \dots, \tilde{\mathbf{p}}(t-1)\}} f(\tilde{\mathbf{p}})$$

- **3** Update $\alpha_{\ell}(t)$, $\beta_{\ell}(t)$ for $\tilde{\boldsymbol{p}}_{o}$, i.e., at $z_{o} = \gamma_{\ell}(\mathbf{p}_{o}(t))$, $\forall \ell \in \mathcal{L}$
- **9 repeat**: Solve Core problem \to new $\tilde{\boldsymbol{p}}_o(t) \to$ new $\alpha_{\ell}(t)$, $\beta_{\ell}(t)$ for $\tilde{\boldsymbol{p}}_o(t)$, $\forall \ell \in \mathcal{L} \to$ new $\tilde{\boldsymbol{p}}_o(t)$... **until** convergence

Prior art for BPPC

- Low-complexity algorithms for BPPC (multihop CDMA wireless networks) [Giannoulis et al 2006]
- high-SINR assumption
- distributed
- run in parallel with system-evolution (real time)

Back Pressure Best Response

$$D_{\ell}(t) \to \pi_{\ell}(t) = \frac{D_{\ell}(t)}{I_{\ell}(\mathbf{p}(t)) + V_{\ell}}, \quad \text{where } I_{\ell}(\mathbf{p}(t)) := \frac{1}{G} \sum_{\substack{k=1 \ k \neq \ell}}^{L} G_{k\ell} p_k(t)$$

$$D_{\ell}(t) \to \pi_{\ell}(t) = \frac{D_{\ell}(t)}{I_{\ell}(\mathbf{p}(t)) + V_{\ell}}, \quad \text{where } I_{\ell}(\mathbf{p}(t) := \frac{1}{G} \sum_{\substack{k=1 \ k \neq \ell}}^{L} G_{k\ell} p_{k}(t)$$

$$\pi_{\ell}(t) \to \forall k \neq \ell \to p_{\ell}(t+1) = \min\left(\frac{D_{\ell}(t)}{\sum_{\substack{k=1 \ k \neq \ell}}^{L} \pi_{k}(t) \frac{1}{G} G_{\ell k}}, P_{\ell}^{max}\right), \forall \ell \in \mathcal{L}, \forall t$$

Simulation setup

- N = 6 nodes, low-left = s, top-right = d, L = 25 links
- $G_{\ell,k} \sim 1/d^4$, d: distance $\text{Tx}(\ell)$, Rx(k), G = 128,
- no-listen-while-talk: if $Rx(\ell) = Tx(k) \rightarrow G_{k.\ell} = 1/eps$
- $V_{\ell} = 10^{-12}, P_{\ell} = 5, \forall \ell$
- Deterministic fixed-rate arrivals

Batch high-SINR

Maximum stable arrival rate: 9.7 packets per slot (pps)

Adaptive high-SINR

• Maximum stable arrival rate: 9.7 pps

Adaptive high-SINR

• Unstable setup; arrival rate: 9.9 pps

Batch Successive Approximation

• Maximum stable rate: 10.4 pps

Adaptive Successive Approximation

• Maximum stable rate: 10.4 pps

Adaptive Successive Approximation

• Unstable setup; arrival rate: 10.8 pps

BP Best Response

• Maximum arrival rate: 5.7 pps

BP Best Response

• Unstable setup; arrival rate: 5.8 pps

Throughput & average complexity comparison

Table: Attainable stable arrival rates in packets per slot.

Scenario	B/A high-SINR	B/A successive	Best Resp
Scenario 1	9.7	10.4	5.7
Scenario 2	2.4	7.5	2.1
Scenario 3	12.6	15.7	4.4

BP Best Response

- BP Best Response is very cheap w.r.t. computation
- Indicatively, average run-time: \approx 0.0085 sec per slot
- More than 2 orders faster than adaptive version high-SINR / S.A.

S.A.-BPPC

- Worst case complexity: $\mathcal{O}(L^{3.5})$ for batch / $\mathcal{O}(L^3)$ for adaptive
- Avg. run-time for batch: high-SINR ≈ 8 sec / S.A. ≈ 20 sec per slot
- Avg. run-time for adaptive: high-SINR / S.A. ≈ 1 to 1.5 sec per slot

Concluding remarks

- S.A. approach (DSL literature) is meaningful;
- Manifold improvement in end-to-end throughput vs high-SINR-based alg.
- Much shorter backlogs / queueing delays, much faster transient response compared to BPBR
- Push-pull wave propagation, periodic behavior for stable setups \checkmark

Distributed BPPC

Core (maximization) step of S.A. approach to BPPC

$$\begin{aligned} \max_{\left\{\tilde{p}_{\ell} \leq \tilde{P}_{\ell}\right\}_{\ell \in \mathcal{L}}} \sum_{\ell=1} D_{\ell}(t) \underline{c}_{\ell} \\ \underline{c}_{\ell} := \left(\alpha_{\ell}(t) \left(\tilde{G}_{\ell\ell} + \tilde{p}_{\ell} - \log \left(\sum_{\substack{k=1\\k \neq \ell}}^{L} e^{\tilde{G}_{k\ell} + \tilde{p}_{k}} + e^{\tilde{V}_{\ell}}\right)\right) + \beta_{\ell}(t)\right) \end{aligned}$$

- Successive Convex Approximation Approach: $\forall t$,
 - $\mathbf{p}(t) \to \text{new } \alpha_{\ell}(t), \ \beta_{\ell}(t) \text{ at } z_{0} = \gamma_{\ell}(\mathbf{p}(t)), \forall \ell \in \mathcal{L} \to \text{new } \mathbf{p}(t)$
- Good news: manifold improvement in end-to-end throughput relative to the prior art
- Centralized implementation
- Practical power control \leftrightarrow distributed across network

Towards distributed implementation of the core step

• Goal: decomposition into L parallel subproblems

Key step: Shift coupling of $\{\tilde{p}_{\ell}\}_{\ell\in\mathcal{L}}$ from objective to constraints

- auxiliary variables $\{\tilde{i}_{\ell k}\}_{k \neq \ell} :=$ interference to ℓ from $k \neq \ell$, $\forall \ell \in \mathcal{L}$
- add associated constraints: $\tilde{G}_{k\ell} + \tilde{p}_k = \tilde{i}_{\ell k}, \forall k \neq \ell, \forall \ell \in \mathcal{L}$

$$\min_{\tilde{\boldsymbol{p}}, \left\{\tilde{\boldsymbol{i}}_{\ell}\right\}_{\ell \in \mathcal{L}}} \sum_{\ell=1}^{L} -D_{\ell} \alpha_{\ell} \left(\tilde{G}_{\ell\ell} + \tilde{p}_{\ell}\right) + D_{\ell} \alpha_{\ell} \log \left(\sum_{\substack{k=1\\k \neq \ell}}^{L} e^{\tilde{\boldsymbol{i}}_{\ell k}} + e^{\tilde{\boldsymbol{V}}_{\ell}}\right) - D_{\ell} \beta_{\ell}$$

subject to
$$\tilde{G}_{k\ell} + \tilde{p}_k = \tilde{i}_{\ell k}, \quad \forall k \neq \ell, \quad \forall \ell \in \mathcal{L},$$

subject to $\tilde{p}_{\ell} \leq \tilde{P}_{\ell}, \quad \ell \in \mathcal{L}$

$$oldsymbol{ ilde{i}}_\ell := \left\{ ilde{i}_{\ell k}
ight\}_{k
eq \ell}, \, oldsymbol{ ilde{p}} := \left\{ ilde{p}_\ell
ight\}_{\ell \in \mathcal{L}}$$

The augmented Lagrange function

- Augmented Lagrange function with penalty parameter ρ
- $\{\gamma_{\ell k}\}_{k \neq \ell} := \text{Lagrange multipliers } \forall \ell \in \mathcal{L} \mapsto \tilde{G}_{k\ell} + \tilde{p}_k = \tilde{i}_{\ell k}, \forall k \neq \ell$
- $\lambda_{\ell} := \text{Lagrange multiplier} \mapsto \tilde{p}_{\ell} \leq \tilde{P}_{\ell}, \forall \ell \in \mathcal{L}$

Decomposition of augmented Lagrangian

$$L_{\rho} = \sum_{\ell=1}^{L} \left(-D_{\ell} \alpha_{\ell} \left(\tilde{G}_{\ell\ell} + \tilde{p}_{\ell} \right) + D_{\ell} \alpha_{\ell} \log \left(\sum_{k=1}^{L} e^{\tilde{i}_{\ell k}} + e^{\tilde{V}_{\ell}} \right) \right)$$
$$-D_{\ell} \beta_{\ell} + \lambda_{\ell} \left(\tilde{p}_{\ell} - \tilde{P}_{\ell} \right) + \sum_{\substack{k=1 \ k \neq \ell}}^{L} \gamma_{k\ell} \tilde{G}_{\ell k} + \tilde{p}_{\ell} \left(\sum_{\substack{k=1 \ k \neq \ell}}^{L} \gamma_{k\ell} \right)$$
$$-\sum_{\substack{k=1 \ k \neq \ell}}^{L} \gamma_{\ell k} \tilde{i}_{\ell k} \right) + \frac{\rho}{2} \sum_{\ell=1}^{L} \sum_{\substack{k=1 \ k \neq \ell}}^{L} \left(\tilde{G}_{k\ell} + \tilde{p}_{k} - \tilde{i}_{\ell k} \right)^{2}$$

Utilizing Alternating Direction Method of Multipliers

Noteworthy points

- \tilde{p}_{ℓ} and $\{\tilde{i}_{\ell k}\}_{k \neq \ell}$ are local primal variables for link ℓ
- λ_{ℓ} and $\{\gamma_{\ell k}\}_{k\neq \ell}$ are local dual variables for link ℓ
- $L_{\rho} = \sum_{\ell=1}^{L} L_{\ell} \left(\tilde{p}_{\ell}, \tilde{i}_{\ell}, \lambda_{\ell}, \{\gamma_{\ell k}\}_{k \neq \ell} \right) + \text{regularization term}$
- ullet Quadratic regularization term o strict convexity w.r.t. $ilde{m{p}}$
- **ADMoM** with dual ascent method \rightarrow decentralized solution possible
- $ADMoM \rightarrow favorable$ convergence properties in our context, unlike dual decomposition method
- ADMoM's steps \mapsto update \tilde{p} , $\{\tilde{i}_{\ell}\}_{\ell\in\mathcal{L}}$, and $\{\gamma_{\ell k}\}_{\ell\in\mathcal{L},k\neq\ell}$
- Projected gradient step \mapsto update λ
- L parallel subproblems: $\forall \ell \in \mathcal{L}$ the iterates boil down to ...

ADMoM and dual ascent method

\tilde{p}_{ℓ} -optimization step, $\forall \ell \in \mathcal{L} \ (s := \text{iteration index})$

$$\tilde{p}_{\ell}(s) := \arg\min_{\tilde{p}_{\ell}} -D_{\ell} \alpha_{\ell} \tilde{p}_{\ell} + \lambda_{\ell}(s-1) \tilde{p}_{\ell} + \tilde{p}_{\ell} \left(\sum_{\substack{k=1\\k\neq\ell}}^{L} \gamma_{k\ell} (s-1) \right)$$

$$+\frac{\rho}{2} \sum_{\substack{k=1\\k\neq\ell}}^{L} \left(\tilde{G}_{\ell k} + \tilde{p}_{\ell} - \tilde{i}_{k\ell}(s-1) \right)^2$$

- convex quadratic in $\tilde{p}_{\ell} \to \text{closed form update}$
- Available control channels among nodes \rightarrow information exchanges
- Local link gain information: $Tx(\ell)$ knows $G_{\ell k}$ to Rx(k)
- Feedback requirements from interfering links:
 - dual variables $\{\gamma_{k\ell}(s-1)\}_{k\neq\ell}$
 - auxiliary variables $\{\tilde{i}_{k\ell}(s-1)\}_{k\neq \ell}$

ADMoM and dual ascent method

$ilde{m{i}}_\ell$ -optimization step, $orall \ell \in \mathcal{L}$

$$\left\{\tilde{i}_{\ell k}\right\}_{k \neq \ell}(s) := \arg \min_{\left\{\tilde{i}_{\ell k}\right\}_{k \neq \ell}} D_{\ell} \alpha_{\ell} \log \left(\sum_{\substack{k=1\\k \neq \ell}}^{L} e^{\tilde{i}_{\ell k}} + e^{\tilde{V}_{\ell}}\right) - \sum_{\substack{k=1\\k \neq \ell}}^{L} \gamma_{\ell k}(s-1)\tilde{i}_{\ell k}$$

$$+\frac{\rho}{2} \sum_{\substack{k=1\\k\neq\ell}}^{L} \left(\left(\tilde{G}_{k\ell} + \tilde{p}_k \right) (s) - \tilde{i}_{\ell k} \right)^2$$

- solved e.g., via damped Newton's method
- Requires: interference $(\tilde{G}_{k\ell} + \tilde{p}_k)(s)$ from $\forall k \neq \ell$ to ℓ at iteration $s \rightarrow$ estimated by ℓ , or communicated to ℓ

ADMoM and dual ascent method: optimization steps

$\gamma_{\ell k}$ - update step, $\forall k \neq \ell, \ell \in \mathcal{L}$

$$\gamma_{\ell k}(s) := \gamma_{\ell k}(s-1) + \rho\left(\left(\tilde{G}_{k\ell} + \tilde{p}_k\right)(s) - \tilde{i}_{\ell k}(s)\right)$$

• step-size: strictly equal to ρ , and $\rho > 0$, according to ADMoM

λ_{ℓ} - projected gradient step, $\forall \ell \in \mathcal{L}$

$$\lambda_{\ell}(s) := \left[\lambda_{\ell}(s-1) + \delta_{s} \left(\tilde{p}_{\ell}(s) - \tilde{P}_{\ell}\right)\right]_{0}^{+}$$

• step-size: e.g., $\delta_s = \delta_1/s$, $\delta_1 > 0$, or a sufficiently small constant $\delta > 0$

Distributed convex approximation of BPPC

Core step 1 algorithm (global constant ρ)

Given D_{ℓ} , α_{ℓ} , β_{ℓ} , $\forall \ell \in \mathcal{L}$, and s := iteration counter

- Initialization: For s = 0, set: $\rho > 0$, $\delta_1 > 0$, $\{\lambda_{\ell}(0)\}_{\ell=1}^L > 0$, $\{\gamma_{\ell k}(0)\}_{\ell \in \mathcal{L}, k \neq \ell} > 0$, and $\{\tilde{i}_{\ell k}(0)\}_{\ell \in \mathcal{L}, k \neq \ell}$ random
- $\forall \ell \in \mathcal{L}$: transmit initial $\gamma_{\ell k}(0)$ and $i_{\ell k}(0)$ to link $k, \forall k \neq \ell$
- Repeat: Set s := s + 1
 - $\forall \ell \in \mathcal{L}$: \tilde{p}_{ℓ} -optimization step to obtain $\tilde{p}_{\ell}(s)$
 - 2 $\forall \ell \in \mathcal{L}$: \tilde{i}_{ℓ} -optimization step to obtain $\tilde{i}_{\ell}(s)$
 - **③** $\forall \ell \in \mathcal{L}$: $\gamma_{\ell k}$ -update step $\forall k \neq \ell$ to obtain $\{\gamma_{\ell k}(s)\}_{k\neq \ell}$
 - $\forall \ell \in \mathcal{L}: \lambda_{\ell}$ -update step to obtain $\lambda_{\ell}(s)$
 - **6** $\forall \ell \in \mathcal{L}$: transmit $\gamma_{\ell k}(s)$ and $\tilde{i}_{\ell k}(s) \to \text{link } k, \forall k \neq \ell$
- Until: convergence (within ϵ -accuracy); then $\tilde{p}_{\ell}^{opt} := \tilde{p}_{\ell}(s), \forall \ell \in \mathcal{L}$

Distributed core step algorithm

- Convergence should be based on local computation and communication
- Each link may keep track of a local metric, e.g.,
 - successive differences of its local augmented Lagrange function
 - norm of its residual local equality constraint violation vector $\mathbf{r}_{\ell}(s)$, with elements $r_{\ell k}(s) := \tilde{G}_{k\ell} + \tilde{p}_k(s) - \tilde{i}_{\ell k}(s), \forall k \neq \ell$
- Local metric under $\epsilon \to \text{local convergence}$
- **Termination** of the distributed protocol:
 - each link maintains binary flag: $1 \leftrightarrow$ convergence w.r.t. its local metric (within given ϵ) is achieved
 - distributed consensus-on-the-min algorithm among links \rightarrow iterates terminate once all links reach convergence
- Variations of ADMoM [Bertsekas '96, Boyd 2011]
 - adaptive local penalty parameters \rightarrow accelerate convergence (see thesis)
 - core step 2: less dependent on initial choice of penalty parameters

Distributed adaptive S.A. algorithm for BPPC

Distributed adaptive S.A. algorithm for BPPC (warm re-start)

- $\forall t \to \{D_{\ell}(t)\}_{\ell \in \mathcal{L}}$ W > expected period
- *Initialization*: For t = 1: $\alpha_{\ell}(t) = 1, \beta_{\ell}(t) = 0, \forall \ell \in \mathcal{L} \ \lambda_{\ell,o} > 0, \ \{\gamma_{\ell k,o}\}_{k \neq \ell} > 0, \ \mathbf{i}_{\ell,o} \text{ random}$ For $t \in [2, W]$ set $\forall \ell \in \mathcal{L}$:

$$\tau_o = \arg\min_{\tau \in \{t-1,...,1\}} |D_{\ell}(t) - D_{\ell}(\tau)|$$

For $t \geq W + 1$ set $\forall \ell \in \mathcal{L}$:

$$\tau_o = \arg\min_{\tau \in \{t-1, \dots, t-W\}} |D_{\ell}(t) - D_{\ell}(\tau)|$$

$$\alpha_{\ell}(t) := \alpha_{\ell}^{opt}(t - \tau_o), \quad \beta_{\ell}(t) := \beta_{\ell}^{opt}(t - \tau_o)$$

$$\lambda_{\ell} := \lambda_{\ell}^{opt}(t - \tau_o), \quad \{\gamma_{\ell k}\}_{k \neq \ell} := \left\{\gamma_{\ell k}^{opt}(t - \tau_o)\right\}_{k \neq \ell}, \quad \tilde{\boldsymbol{i}}_{\ell} := \tilde{\boldsymbol{i}}_{\ell}^{opt}(t - \tau_o)$$

E. Matskani (Dept. ECE, TUC)

PhD Defense

Weighted sum-MSE Minimization for WSR Maximization

- Distributed Sum-Utility Maximization for MIMO IBC [Christensen et al 2008], [Shi et al, 2011]
- In [Shi et al, 2011]:
- Proof: WSR Maximization is equivalent to properly weighted sum-MSE Minimization
- Proof: Iterative WMMSE \rightarrow local optimal (st. point) of WSRM
- Use iterative WMMSE to approx. solve BPPC at physical layer
- MIMO IBC \rightarrow SISO IC (in our context):
 - $h_{k\ell} := \text{channel } \operatorname{Tx}(k) \to \operatorname{Rx}(\ell), \sim \mathcal{CN}(0,1), \text{ scaling: } |h_{k\ell}|^2 = G_{k\ell}, \forall \ell, k \in \mathcal{L}$
 - Alternatively: $h_{k\ell} \in \mathbb{R}$, equal to $\sqrt{G_{\ell k}}$, $\forall k, \ell \in \mathcal{L}$

• $w_{\ell}^{opt} = e_{\ell}^{-1}, \quad \forall \ell \in \mathcal{L}$

• $u_{\ell}^{opt} \equiv u_{\ell}^{mmse} =$

Weighted MMSE approach to dif. backlog WSRM

Weighted sum-MSE Minimization

$$\min_{\{w_{\ell}, u_{\ell}, v_{\ell}\}_{\ell \in \mathcal{L}}} \sum_{\ell=1}^{L} D_{\ell}(t) \left(w_{\ell} e_{\ell} - \log(w_{\ell}) \right)$$

s. t.
$$|v_{\ell}|^2 \le P_{\ell}$$
, $\ell \in \mathcal{L}$

s. t.
$$|v_{\ell}|^2 \leq P_{\ell}$$
, $\ell \in \mathcal{L}$
$$\frac{\sum_{k=1}^{L} |h_{k\ell}|^2 |v_k|^2 + V_{\ell}}{\sum_{k=1}^{L} |h_{k\ell}|^2 |v_k|^2 + V_{\ell}}, \quad \forall \ell \in \mathcal{L}$$
• $e_{\ell} := \text{m.sq. error}, \ w_{\ell} > 0 := \text{weight var}, \ v_{\ell} / u_{\ell} \in \mathbb{C}^{1 \times 1} := \text{gain } \text{Tx}(\ell) / \text{Rx}(\ell)$

Simplifying WMSE minimization yields BPPC at physical layer

$$\max_{\{v_{\ell}\}_{\ell\in\mathcal{L}}} \sum_{\ell=1}^{L} D_{\ell}(t) \log \left(1 + \frac{|h_{\ell\ell}|^2 |v_{\ell}|^2}{\sum_{\substack{k=1\\k\neq\ell}}^{L} |h_{k\ell}|^2 |v_{k}|^2 + V_{\ell}} \right)$$
 Upon change of variables:
$$\bullet \ p_{\ell} = |v_{\ell}|^2, \ \forall \ell \in \mathcal{L}$$

s. t.
$$|v_{\ell}|^2 < P_{\ell}$$
, $\ell \in \mathcal{L}$

- $G_{k\ell} = |h_{k\ell}|^2, \forall k, \ell \in \mathcal{L}$

E. Matskani (Dept. ECE, TUC)

Iterative WMMSE algorithm for BPPC

Batch iterative WMMSE algorithm for BPPC

- 2 Initialize: $v_{\ell} = \sqrt{P_{\ell}}, \forall \ell \in \mathcal{L}$
- 3 repeat
- $(w_{\ell})' \leftarrow w_{\ell}, \forall \ell \in \mathcal{L}$
- $\bullet \quad u_{\ell} \leftarrow \frac{h_{\ell\ell} v_{\ell}}{\sum_{k=1}^{L} G_{k\ell} v_{k}^{2} + V_{\ell}}, \forall \ell \in \mathcal{L}$
- $v_{\ell} \leftarrow \left[\frac{D_{\ell}(t)w_{\ell}u_{\ell}h_{\ell\ell}}{\sum_{k=1}^{L}D_{k}(t)w_{k}u_{k}^{2}G_{\ell k}} \right]_{0}^{\sqrt{P_{\ell}}}, \forall \ell \in \mathcal{L}$
- **s** until $|\log(w_{\ell}) \log((w_{\ell})')| \le \epsilon, \forall \ell \in \mathcal{L}$

- $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})$ space
- convex w.r.t. to eachu, v, w holding others fixed
- block coordinate descent technique $\rightarrow suboptimal$ solution
- Feedback: $\left\{D_k u_k^2 w_k\right\}_{k \neq \ell} \to \ell$
- Consensus-on-the-min algorithm for termination of iterates
- one shot approximation to BPPC $\forall t$
- low complexity

E. Matskani (Dept. ECE, TUC)

PhD Defense

Distributed Adaptive WMMSE algorithm for BPPC

- Same stable setup considered; exploit expected periodicity due to push-pull nature of solution
- Same strategy for warm re-start with the S.A. algorithm
- speed up convergence of WMMSE

Distributed Adaptive WMMSE for BPPC (warm re-start)

• Power - initialization:

For
$$t = 1$$
 set: $v_{\ell} = \sqrt{P_{\ell}}$, $\forall \ell \in \mathcal{L}$
For $t \in [2, W]$ set:

$$\tau_o = \arg\min_{\tau \in \{t-1,\dots,1\}} |D_{\ell}(t) - D_{\ell}(\tau)|, \ v_{\ell} = \sqrt{p_{\ell}(t-\tau_o)}, \forall \ell \in \mathcal{L}$$

For t > W + 1 set:

$$\tau_o = \arg\min_{\tau \in \{t-1, \dots, t-W\}} |D_{\ell}(t) - D_{\ell}(\tau)|, \ v_{\ell} = \sqrt{p_{\ell}(t-\tau_o)}, \forall \ell \in \mathcal{L}$$

• W >expected period

Scheduling heuristic

- Consider $A \neq B$ subsets of links: $A \longrightarrow i$ and $i \longrightarrow B$
- BPPC (under our specific setups / assumptions): node i favors subset with **maximum** sum of differential backlogs
- Each node $i \in \{\mathcal{N}\} \setminus N$ knows backlogs of all other nodes $j \neq i, N$
- $\bullet \ \ell = (i, j), \ j \neq N$ $D_{\ell}(t)$: node j, $W_i \to i$
- \bullet \forall links departing from i
- \bullet \forall nodes except N (sink)
- possible only in our specific setups
- $\downarrow \sharp$ of variables \rightarrow
- ↓ computational complexity
- mode 2 implementation

Scheduling heuristic (network layer)

For each node $i \in \{\mathcal{N}\} \setminus N$:

- Calculate $D_{\ell}(t)$, $\forall \ell : \text{Tx}(\ell) = i$, $D_{\ell}(t) := \begin{cases} \max\{0, W_i(t) - W_j(t)\}, & j \neq N \\ W_i(t), & j = N. \end{cases}$
- Calculate $D_k(t)$, $\forall k : \operatorname{Rx}(k) = i$, $D_k(t) := \max\{0, W_i(t) - W_i(t)\}, i \neq N.$
- If $\sum_{\ell: \operatorname{Tx}(\ell)=i} D_{\ell}(t) > \sum_{k: \operatorname{Rx}(k)=i} D_{k}(t)$, set $D_k(t) = 0, \forall k : \operatorname{Rx}(k) = i$. else

set $D_{\ell}(t) = 0, \forall \ell : \operatorname{Tx}(\ell) = i$

Simulation setup

- N=6 nodes, low-left = s, top-right = d, L=25 links
- $G_{\ell,k} \sim 1/d^4$, d: distance $\text{Tx}(\ell)$, Rx(k), G = 128,
- no-listen-while-talk: if $Rx(\ell) = Tx(k) \rightarrow G_{k.\ell} = 1/eps$
- $V_{\ell} = 10^{-12}, P_{\ell} = 5, \forall \ell$
- Deterministic fixed-rate arrivals

Performance evaluation of core step algorithms

Simulation experiment:

- 100 packets/control slots, deterministic arrival rate: 9 packets/slot
- Centralized Batch high-SINR \rightarrow resulting $D_{\ell}(t)$, $\forall \ell, \forall t \in \{1, 100\}$
- High-SINR $\leftrightarrow \alpha_{\ell}(t) = 1$, $\beta_{\ell}(t) = 0$, $\forall \ell$ and $\forall t$
- Solve above 100 instances via distributed core step algorithms:
 - Initialization : $\{\lambda_{\ell}\}_{\ell \in \mathcal{L}}$, $\{\gamma_{\ell k}\}_{k \neq \ell}^{\ell \in \mathcal{L}} \to 1$, $\{\tilde{i}_{\ell}\}_{\ell \in \mathcal{L}}$ random, $\delta_s = \delta = 0.01$, $\forall s$
 - Termination criterion: local metrics must drop under $\epsilon = 10^{-2}$, $\forall \ell \in \mathcal{L}$
 - variation of local augmented Lagrange function, $\forall \ell \in \mathcal{L}$
 - norm of residual consensus constraints vector $\mathbf{r}_{\ell}(s)$, $\forall \ell \in \mathcal{L}$

The role of the penalty parameter

Table: Results for problem instance at 30^{th} slot, for various ρ and initial $\{\rho_{\ell,o}\}_{\ell\in\mathcal{L}}$. Tolerance $\epsilon := 10^{-2}$. Objective value for Batch high-SINR: 97.6388.

$\rho / \{\rho_{\ell,o}\}_{\ell \in \mathcal{L}}$	0.002	0.003	0.01	0.1	0.5	1	5
core step 1:	1058	732	318	106	311	463	1212
# iterations							
core step 1:	97.71	97.7	97.67	97.52	97.49	97.42	97.07
objective value							
core step 2:	127	103	103	97	125	127	256
# iterations							
core step 2:	97.58	97.56	97.58	97.57	97.57	97.57	97.65
objective value							

- 'sweet spot' at $\rho \sim 0.1$: minimum \sharp of iterations required
- Very low or high values of $\rho \to slow \ down \ convergence$.
- Adaptive $\{\rho_\ell\}_{\ell \in \mathcal{L}}$: core step 2 less dependent on the initial choice

Simulation results

 Distributed core step algorithms vs centralized high-SINR, for 100 problem instances

Core step 1 (left): Objective value (top), abs. difference (bottom), $\rho = 0.01$. Core step 2 (right): Objective value (top), abs. difference (bottom), $\rho = 0.1$.

Performance evaluation of distributed S.A. algorithms for BPPC

- Performance of distributed high-SINR / S.A. examined through simulations
 - Scenario 1: **Small network** (N = 6, L = 25) nodes, **moderate** interference (G = 128)
 - Scenario 2: **Small network** (N = 6, L = 25) nodes, **stronger** interference (G=8)
 - Scenario 3: Larger network (N = 12, L = 121) nodes, moderate interference (G = 128)
- Fixed physical layer propagation conditions
- Deterministic fixed-rate arrivals
- no-listen-while-talk: if $Rx(\ell) = Tx(k) \rightarrow G_{k,\ell} = 1/eps$
- $V_{\ell} = 10^{-12}, P_{\ell} = 5, \forall \ell$

Distributed adaptive high-SINR

• Scenario 3- larger network; N=12, G=128, max stable rate: 12.6 pps

Distributed adaptive high-SINR

• Scenario 3- unstable setup; arrival rate: 12.7 pps

Distributed adaptive Successive Approximation

• Scenario 3- larger network; N=12, G=8, max stable rate: 15.7 pps

Distributed adaptive Successive Approximation

• Scenario 3- unstable setup; arrival rate: 16.1 pps

Summarizing simulation results

Table: Maximum stable throughput and average weighted sum-rate attained by all algorithms in all scenarios. (1):= core step 1, (2):= core step 2, w.s.r. := weighted sum-rate.

Scen. 1	Batch high-SINR	Adapt. high-SINR	Batch S.A.	Adapt. S.A.
	(1) / (2)	(1) / (2)	(1) / (2)	(1) / (2)
rate	9.7 / 9.7	9.7 / 9.7	10.4	10.4
w.s.r	151.32 / 151.32	151.31/ 151.31	184.46	184.45
Scen. 2				
rate	2.4 / 2.4	2.4 / 2.4	7.8	7.8
w.s.r.	0.95 / 0.96	$0.95 \ / \ 0.96$	107.48	107.47
Scen. 3				
rate	12.6 / 12.6	12.6 / 12.6	15.7	15.7
w.s.r.	276.19 / 276.21	276.18 / 276.2	454.31	454.3

Adaptive WMMSE

• Scenario 1- maximum stable rate: 12.4 pps > S.A.-BPPC (10.4 pps)

Adaptive WMMSE

• Scenario 1- unstable setup; arrival rate: 12.5 pps

Adaptive WMMSE

• Scenario 3- larger network; max stable rate: 12.1 pps < S.A. (15.7 pps)

Distributed adaptive high-SINR

• Scenario 3- unstable setup; arrival rate: 12.2 pps

Adaptive WMMSE (mode 2)

• Scenario 3 - maximum stable rate: 15.7 pps (same for S.A.)

WMMSE versus S.A. under identical problems

- Fair comparison w.r.t. weighted sum-rate
- \bullet \rightarrow under identical problem instances
- Experiment:
- Let batch S.A. drive the network (schedule all links with $D_{\ell}(t) > 0, \forall \ell, \forall t$) (mode 1)
- Solve problem with dif. backlogs resulting at each time slot from S.A. via batch WMMSE
- Test WMMSE under mode 1, mode 2

• Rate: 10.4 pps, w.s.r. batch S.A. vs w.s.r. batch WMMSE (mode 1)

• Rate: 10.4 pps, w.s.r. batch S.A. vs w.s.r. batch WMMSE (mode 2)

• Rate: 7.8 pps, w.s.r. batch S.A. vs w.s.r. batch WMMSE (mode 1)

• Rate: 7.8 pps, w.s.r. batch S.A. vs w.s.r. batch WMMSE (mode 2)

• Rate: 15.7 pps, w.s.r. batch S.A. vs w.s.r. batch WMMSE (mode 1)

• Rate: 15.7 pps, w.s.r. batch S.A. vs w.s.r. batch WMMSE (mode 2)

Summarizing simulation results

Table: Average throughput and average weighted sum-rate attained by WMMSE and S.A. algorithms in all scenarios. w.s.r. := weighted sum-rate.

Scen. 1	WMMSE	WMMSE	S.A.	S.A.
	(Batch / Ad.)	(Batch / Ad.)	(Batch / Ad.)	(Batch / Ad.)
	mode 1	mode 2	mode 1	mode 2
Max rate	12.4	10.4	10.4	10.4
Avg. w.s.r	155.4	184.4	184.4	184.4
Scen. 2				
Max rate	12.3	7.8	7.8	7.8
Avg. w.s.r.	168.6	107.3	107.4	107.4
Scen. 3				
Max rate	12.1	15.7	15.7	15.7
Avg. w.s.r.	149	454.4	454.3	454.3

Average complexity of WMMSE

Table: Best and worst cases of average run-time and average number of iterations per slot, of all WMMSE-based algorithms, concerning all scenarios considered.

	Batch	Adaptive	Batch	Adaptive
	WMMSE	WMMSE	WMMSE	WMMSE
	mode 1	mode 1	mode 2	mode 2
Max avg.	0.06	0.0125	0.114	0.008
run-time				
Min. avg.	0.015	0.0061	0.055	0.0045
run-time				
Max avg.	118	1	376	3
# iter.				
Min avg.	20	1	242	1
# iter.				

- Batch S.A. is not comparable (orders of magnitude slower)
- Adaptive S.A.: min avg. run-time 0.0065 seconds, max: 0.2 seconds (steady state)

Concluding remarks

- WMMSE clearly better than S.A.-BPPC complexity-wise
- Inconclusive results regarding performance:
 - WMMSE outperforms in strong interference scenario
 - S.A.-BPPC holds the edge in larger networks
- Comparing *suboptimal* BPPC solutions w.r.t. average weighted sum-rate may be a $fallacy \rightarrow$ which algorithm supports higher stable throughput?
- Scheduling heuristic *improves throughput performance* of WMMSE in larger networks
- Improvement to original WMMSE is simple but worthwhile, effective power initialization

- This research was co-financed by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.
- Parts of this work appear in:
- E. Matskani, N.D. Sidiropoulos, and L. Tassiulas, "Convex Approximation Algorithms for Back-pressure Power Control," *IEEE Transactions on Signal Processing*, vol. 60, no. 4, pp. 1957-1970, April 2012
- E. Matskani, N.D. Sidiropoulos, and L. Tassiulas, "Convex Approximation Algorithms for Back-pressure Power Control of Wireless Multi-hop Networks," in *Proc. IEEE ICASSP 2011*, pp. 3032-3035, Prague, Czech Republic, May 22-27, 2011
- E. Matskani, N.D. Sidiropoulos, and L. Tassiulas, "Distributed Back-pressure Power Control for Wireless Multi-hop Networks," in *Proc.* IEEE ICASSP 2012, pp. 3032-3035, Kyoto, Japan, May 25-30, 2012