Technical University of Crete School of Production Engineering and Management Dynamic Systems and Simulation Laboratory

Freeway Traffic Flow Modeling and Control with Emphasis on Congested Off-Ramp Areas

Anastasia Spiliopoulou

June 15th, 2015

Introduction

Calibration of Macroscopic Traffic Flow Models

Real-Time Traffic Control Measures : Case 1 – Route diversion control

Real-Time Traffic Control Measures : Case 2 – Merging traffic control

Introduction

Calibration of Macroscopic Traffic Flow Models

Real-Time Traffic Control Measures : Case 1 – Route diversion control

Real-Time Traffic Control Measures : Case 2 – Merging traffic control

Introduction

- Motivation
- Objectives and Approach

Real-Time Traffic Control Measures: Case 1 – Route diversion control

Real-Time Traffic Control Measures : Case 2 – Merging traffic control

Motivation

- During the last decades, freeway congestion has been a major problem especially at urban freeways and periurban ring-roads.
- Recurrent traffic congestion is usually encountered at freeway on-ramp areas or freeway-to-freeway merging areas, but, quite frequently, also close to freeway off-ramp areas.
- Expanding the existing infrastructure is not always a feasible option, for economic and environmental reasons, thus traffic control has been employed as an efficient way to mitigate the problem of freeway congestion.

Motivation

- Very <u>limited technical literature</u> (and practical systems) addressing appropriate control measures for congested off-ramp areas.
- The main reasons probably being that there is no direct way, from the freeway side, to control the freeway exit flow.
- The development of innovative traffic control measures requires the existence of accurate traffic flow models that are able to reproduce the traffic conditions at such areas with satisfactory accuracy.
- Although, a high number of traffic flow models has been proposed over the last decades, they have never been validated and compared for congested freeway off-ramp areas.

Objectives and Approach

The objective of this research is twofold:

First, it aims to identify suitable macroscopic traffic flow models that can represent the traffic conditions at congested freeway off-ramp areas with sufficient accuracy.

Approach: The two most popular macroscopic traffic flow models are validated and compared using real traffic data from a freeway stretch in Athens, Greece, where recurrent traffic congestion is created due to a saturated off-ramp.

Second, it aims to the develop innovative real-time traffic control measures for congested freeway off-ramp areas.

Approach: Two different network topologies are examined, that are often encountered in reality, and suitable traffic control strategies are proposed for every case.

Introduction

Calibration of Macroscopic Traffic Flow Models

Real-Time Traffic Control Measures : Case 1 – Route diversion control

Real-Time Traffic Control Measures : Case 2 – Merging traffic control

Introduction

Calibration of Macroscopic Traffic Flow Models

- Introduction
- Macroscopic traffic flow models
- Model calibration procedure
- Calibration and validation results
- Conclusions and remarks

- Macroscopic mathematical traffic flow models are useful tools for:
 - planning of new, or upgraded road infrastructures
 - development and testing of traffic estimation algorithms
 - development and testing of traffic control strategies
 - etc.
- The models include a number of parameters, whose values may differ for different freeway sites.
- Before employing a traffic flow model in practice, it is important to first calibrate it against real traffic data, i.e. to appropriately specify the model parameter values.
- This section calibrates, validates and compares two macroscopic models, regarding the reproduction of traffic conditions at a congested freeway off-ramp area.

Calibration of Macroscopic Traffic Flow Models

Macroscopic traffic flow models:

CTM (Cell Transmission Model)

Model parameters:

 $v_{f,i}$: free flow speed

 w_i : congestion wave speed

 $\rho_{max,i}$: maximum density

 Q_i : capacity flow

$$\begin{split} &\rho_i(k+1) = \rho_i(k) + \frac{T}{L_i \lambda_i} \Big[q_{i-1}(k) - q_i(k) \Big] \\ &q_i(k) = \min\{v_{f,i} \rho_i(k) \lambda_i, \overline{Q}, w_{i+1} \Big[\rho_{\max,i+1} - \rho_{i+1}(k) \Big] \lambda_{i+1} \} \\ &\overline{Q} = \min\{Q_i, Q_{i+1}\} \\ &v_i(k) = q_i(k) / \Big[\rho_i(k) \lambda_i \Big] \end{split}$$

Macroscopic traffic flow models:

CTM (Cell Transmission Model)

At bifurcations:

Model parameters:

 $v_{f,i}$: free flow speed

 w_i : congestion wave speed

 $\rho_{max.i}$: maximum density

 Q_i : capacity flow

 $w_{off-ramp}$: congestion wave speed (off-ramp)

 $\rho_{max-off-ramp}$:maximum density (off-ramp)

$$q_i(k) = \min\{S_i(k), R_{i+1}(k)/(1-\beta_i(k)), R_{off-ramp}(k)/\beta_i(k)\}\$$

$$S_i(k) = \min\{Q_i, v_{f,i}\rho_i(k)\lambda_i\}$$

$$R_{i+1}(k) = \min\{Q_{i+1}, w_{i+1} \left[\rho_{\max, i+1} - \rho_{i+1}(k) \right] \lambda_{i+1} \}$$

$$R_{off-ramp}(k) = \min\{Q_{off-ramp}, w_{off-ramp} \left[\rho_{\max, off-ramp} - \rho_{off-ramp}(k)\right] \lambda_{off-ramp}\}$$

Macroscopic traffic flow models:

METANET

$$\rho_i(k+1) = \rho_i(k) + \frac{T}{L_i \lambda_i} \left[q_{i-1}(k) - q_i(k) \right]$$

$$q_i(k) = v_i(k)\rho_i(k)\lambda_i$$

$$v_{i}(k+1) = v_{i}(k) + \frac{T}{L_{i}}v_{i}(k)\left[v_{i-1}(k) - v_{i}(k)\right] + \frac{T}{\tau}\left[V^{e}(\rho_{i}(k)) - v_{i}(k)\right] - \frac{vT\left[\rho_{i+1}(k) - \rho_{i}(k)\right]}{\tau L_{i}\left[\rho_{i}(k) + \kappa\right]}$$
$$\delta Ta_{i}(k)v_{i}(k) = \sigma T \Delta \lambda \rho_{i}(k)v_{i}(k)$$

$$V^{e}(\rho_{i}(k)) = v_{f,i} \exp \left[-\frac{1}{a_{i}} \left(\frac{\rho_{i}(k)}{\rho_{cr,i}} \right)^{a_{i}} \right]$$

Model parameters:

 $v_{f,i}$: free flow speed

 ρ_{cri} : critical density

 α_i : FD parameter

τ: time parameter

v: anticipation parameter

 δ : merging parameter

 φ : lane-drop parameter

$$-\frac{\delta Tq_r(k)v_i(k)}{L_i\lambda_i\lceil\rho_i(k)+\kappa\rceil} - \frac{\varphi T\Delta\lambda\rho_i(k)v_i(k)^2}{L_i\lambda_i\rho_{cr,i}}$$

Calibration of Macroscopic Traffic Flow Models

Macroscopic traffic flow models:

METANET

At bifurcations:

$$\rho_{v,i+1}(k) = \frac{\rho_{i+1}^{2}(k) + \rho_{off-ramp}^{2}(k)}{\rho_{i+1}(k) + \rho_{off-ramp}(k)}$$

 $\rho_{v,i+1}$: virtual density downstream of section i

no parameters are included!

Model parameters:

 $v_{f,i}$: free flow speed

 o_{cri} : critical density

 α_i : FD parameter

 τ : time parameter

v: anticipation parameter

 δ : merging parameter

 φ : lane-drop parameter

Calibration of Macroscopic Traffic Flow Models

Model calibration procedure

$$\mathbf{x}(k+1) = f[\mathbf{x}(k), \mathbf{d}(k), \mathbf{p}] \qquad k = 0, 1, ..., K-1$$

$$\mathbf{x}(0) = \mathbf{x}_0$$

x: state vector

d: disturbance vector

p: parameter vector

$$J(\mathbf{p}) = \sqrt{\frac{1}{K} \sum_{k=1}^{K} \left[\mathbf{y}(k) - \mathbf{y}^{\mathbf{m}}(k) \right]^{2}}$$

$$\mathbf{y}(k) = \mathbf{g}[\mathbf{x}(k)]$$

y: model estimations

y^m: real measured traffic data

Freeway site and real traffic data

Attiki Odos freeway stretch:

~6 km long - 3 on-ramps - 3 off-ramps - 11 detector stations

Freeway site and real traffic data

Calibration settings

Simulation set-up:

- Models' time step: T = 5 s.
- CTM parameter vector: $\mathbf{p}_1 = [v_f \ w \ \rho_{max} \ Q \ w_{off-ramp} \ \rho_{max_off-ramp}].$
- METANET parameter vector: $\mathbf{p_2} = [v_f \ \rho_{cr} \ a \ \tau \ v \ \delta \ \varphi].$
- One single fundamental diagram is considered for all freeway sections.
- Real traffic data from 26/05/2009, 16/06/2009, 23/06/2009, 25/06/2009.
- Performance index (PI): RMSE of real versus estimated speeds.

Calibration settings

Calibration set-up:

- Three derivative-free optimization algorithms are employed:
 - Nelder-Mead algorithm
 - Genetic algorithm
 - Cross-entropy method
- Various calibrations tests were carried out for both models and only the best obtained results are presented in the following.

Calibration of Macroscopic Traffic Flow Models

Calibration and validation results:

Models' calibration

CTM

Optimization method	Iterations	Cost function evaluations	Computation time (min)
NM	393	609	0.8
GA	71	36000	34.6
CE	37	18500	19.7

	CTM parameters						
Model	v _f (km/h)	ρ _{max} (veh/km/lane)	w (km/h)	Q (veh/h)	ρ _{max_off-ramp} (veh/km/lane)	w _{off_ramp} (km/h)	
Model 1.1 (NM)	100.4	142.6	22.6	2273	126.3	19.7	
Model 1.2 (GA)	Model 1.2 (GA) 100.3 14		21.5	2247	124.7	21.0	
Model 1.3 (CE)	100.4	153.8	19.8	2268	123.5	20.5	

METANET

Optimization method	Iterations	Cost function evaluations	Computation time (min)	
NM	204	317	0.5	
GA	51	26000	122.9	
CE	85	42500	197.8	

	METANET parameters							
Model	ν _f (km/h)	ρ _{cr} (veh/km/lane)	а	τ (s)	<i>v</i> (km²/h)	δ (h/km)	φ (h/km)	
Model 2.1 (NM)	Todel 2.1 (NM) 117.8 35.5		1.5	18.6	24.5	1.2	1.1	
Model 2.2 (GA)	118.1	36.2	1.4	18.1	21.1	0.2	1.5	
Model 2.3 (CE)	118.8	34.4	1.5	27.2	33.1	0.5	1.0	

Calibration of Macroscopic Traffic Flow Models

Calibration and validation results:

Models' calibration

Models' validation

• Model validation aims to test the accuracy and robustness of the produced models. To this end the models are applied using different traffic data sets.

		Validation results (PI)					
Model		16/06/2009	26/05/2009	23/06/2009	25/06/2009	Average	
	Model 1.1	14.4	18.9	16.4	14.8	16.1	
CTM	Model 2.1	14.7	19.7	16.8	16.3	16.8	
	Model 3.1	14.4	19.0	16.3	14.9	16.2	
ET	Model 2.1	10.1	12.1	12.4	8.4	10.8	
METANET	Model 2.2	9.8	12.3	11.8	9.1	10.8	
	Model 2.3	9.9	12.6	12.4	8.3	10.8	

Calibration of Macroscopic **Traffic** Flow Models

Calibration and validation results:

Models' validation

Conclusions and remarks

- Two macroscopic traffic flow models were tested and compared regarding the representation of traffic congestion created due to a saturated freeway off-ramp.
- The models' parameter values were estimated using real traffic data and various optimization algorithms.
- The validation results showed that both models are able to reproduce traffic congestion due to an over-spilling off-ramp with sufficient accuracy.
- METANET model offers a more accurate representation of the prevailing traffic conditions.

Introduction

Calibration of Macroscopic Traffic Flow Models

Real-Time Traffic Control Measures: Case 1 – Route diversion control

Real-Time Traffic Control Measures : Case 2 – Merging traffic control

Introduction

Calibration of Macroscopic Traffic Flow Models

Real-Time Traffic Control Measures: Case 1 – Route diversion control

- Introduction
- Dynamic route diversion concept
- Test network and traffic demand scenarios
- Simulation investigations
- Conclusions and remarks

- Freeway congestion due to saturated off-ramps is a particular type of congestion thus different freeway sites may call for different traffic control measures.
- Each situation should be viewed as a particular case and the corresponding network characteristics should be taken into account during the development of traffic control strategies.
- In the first examined case, freeway congestion is created due to the limited capacity of an off-ramp, which is not possible to increase.
- Various route diversion strategies are proposed that aim to reroute the drivers through alternative routes.

Consider the following network:

• Primary route distance-shorter route.

Consider the following network:

• Primary route distance-shorter route.

- Primary route distance-shorter route.
- Primary route off-ramp limited capacity.

- Primary route distance-shorter route.
- Primary route off-ramp limited capacity.

- Primary route distance-shorter route.
- Primary route off-ramp limited capacity.
- Concept: divert a portion of traffic, 1β , through the alternative route.

The route diversion concept can be applied through:

Vehicle to Infrastructure Communication

However, drivers are free to ignore messages ...that they perceive incompatible with their own criteria!

- The objective of the route diversion system should not only be the system optimal conditions, but must mainly target user-optimal conditions.
- Depending on the network topology and traffic conditions, three different cases arise:

- Case 1: The user-optimal conditions may be achieved before the off-ramp queue spill-over.
- Case 2: The user-optimal conditions are achieved only after the off-ramp queue spill-over and creation of mainstream congestion.
- Case 3: The user-optimal conditions may not be achievable.

- Case 1: The user-optimal conditions may be achieved before the off-ramp queue spill-over.
 - Dynamic route diversion based on reactive travel time estimation.
 - Dynamic route diversion based on off-ramp queue length estimation.
- Case 2: The user-optimal conditions are achieved only after the off-ramp queue spill-over and creation of mainstream congestion.
- Case 3: The user-optimal conditions may not be achievable.

Dynamic route diversion concept:

Case 1: User-optimal conditions may be achieved before the off-ramp queue spill-over

A. Dynamic route diversion based on reactive travel time estimation

 $\tau(k)$: reactive (estimated) travel time

$$\Delta \tau(k) = \tau^{s}(k) - \tau^{p}(k)$$

PI feedback strategy:

$$\beta(k) = \beta(k-1) + K_p \left[\Delta \tau(k) - \Delta \tau(k-1) \right]$$
$$+ K_i \Delta \tau(k)$$

$$\beta(k) \in [0,1]$$

Dynamic route diversion concept:

Case 1: User-optimal conditions may be achieved before the off-ramp queue spill-over

B. Dynamic route diversion based on off-ramp queue length estimation

w(k): off-ramp queue estimation

 \hat{w} : desired queue level

PI feedback strategy:

$$\beta(k) = \beta(k-1) + K_p \left[w(k-1) - w(k) \right]$$
$$+ K_i \left[\hat{w} - w(k) \right]$$

$$\beta(k) \in [0,1]$$

- Case 1: The user-optimal conditions may be achieved before the off-ramp queue spill-over.
- Case 2: The user-optimal conditions are achieved only after the off-ramp queue spill-over and creation of mainstream congestion.
- Case 3: The user-optimal conditions may not be achievable.

- Case 1: The user-optimal conditions may be achieved before the off-ramp queue spill-over.
- Case 2: The user-optimal conditions are achieved only after the off-ramp queue spill-over and creation of mainstream congestion.
 - Dynamic route diversion based on off-ramp queue length estimation.
 - Dynamic route diversion through temporary off-ramp closures.
- Case 3: The user-optimal conditions may not be achievable.

Dynamic route diversion concept:

Case 2: User-optimal conditions may be achieved only after the off-ramp queue spill-over

A. Dynamic route diversion based on off-ramp queue length estimation

w(k): off-ramp queue estimation

 \hat{w} : desired queue level

PI feedback strategy:

$$\beta(k) = \beta(k-1) + K_p \left[w(k-1) - w(k) \right]$$

$$+ K_i \left[\hat{w} - w(k) \right]$$

$$\beta(k) \in [0,1]$$

Dynamic route diversion concept:

Case 2: User-optimal conditions may be achieved only after the off-ramp queue spill-over

B. Dynamic route diversion through temporary off-ramp closures

w(k): off-ramp queue estimation

 \hat{w} : desired queue level

Bang-Bang feedback strategy:

$$\beta(k) = \begin{cases} 1 & if \ w(k) < \hat{w} \\ 0 & otherwise \end{cases}$$

- Case 1: The user-optimal conditions may be achieved before the off-ramp queue spill-over.
- Case 2: The user-optimal conditions are achieved only after the off-ramp queue spill-over and creation of mainstream congestion.
- Case 3: The user-optimal conditions may not be achievable.

- Case 1: The user-optimal conditions may be achieved before the off-ramp queue spill-over.
- Case 2: The user-optimal conditions are achieved only after the off-ramp queue spill-over and creation of mainstream congestion.
- Case 3: The user-optimal conditions may not be achievable.
 - Dynamic route diversion through temporary off-ramp closures.

Dynamic route diversion concept:

Case 3: User-optimal conditions may not be achieved

A. Dynamic route diversion through temporary off-ramp closures

w(k): off-ramp queue estimation

 \hat{w} : desired queue level

Bang-Bang feedback strategy:

$$\beta(k) = \begin{cases} 1 & if \quad w(k) < \hat{w} \\ 0 & otherwise \end{cases}$$

Destinations

Simulation set-up

Time (hours)

Demand profile and 100 6000 (b) 6000 (a) (c) <u>--</u>01 <u>--</u>O1 O1 O-D rates: 85 75 **-**O2 **—**O2 O2 (veh/h) 4000 2000 O-D Rates (%) Flow (veh/h) 4000 50 2000 25 10 0^L 11 11 7 8 9 10 7 8 9 10 D1D2D3

Performance criteria:

Total Time Spent (TTS) in veh ⋅h

Time (hours)

Total Disbenefit (TD) in veh ·h

Case 1: User-optimal conditions may be achieved

before the off-ramp queue spill-over

A. No route diversion

Route Guidance Policy

TTS (veh·h)

(veh·h)

A. No route diversion

3228

110

Case 1: User-optimal conditions may be achieved

before the off-ramp queue spill-over

B. Dynamic route diversion based on reactive travel time estimation

6000

4000

2000

Flow (veh/h)

6000

4000

2000

Route Diversion Policy

TD (veh·h) **TTS** (veh·h)

110

A. No route diversion

travel times

B. Route diversion based on

3228

2473 0.1 (-23%)(-100%)

PI-strategy parameters:

$$K_D = 18, K_i = 6,$$

$$\Delta \tau = 0 \text{ min}, T_a = 2 \text{ min}$$

L1

9

10 11

8 9 10 11

L2

6000

4000

2000

6

8

L3

9 10 11

Case 1: User-optimal conditions may be achieved

before the off-ramp queue spill-over

C. Dynamic route diversion based on off-ramp queue length estimation

6000

4000

2000

Route Diversion Policy	TTS (veh·h)	TD (veh·h)
A. No route diversion	3228	110
B. Route diversion based on travel times	2473 (-23%)	0.1 (-100%)
C. Route diversion based on queue length	2500 (-23%)	13.7 (-88%)

9 10 11

Time (hours)

L1

8

L2

9

10 11

6000

4000

2000

0<u>L</u>

8

Time (hours)

9 10 11

L3

PI-strategy parameters:

$$K_p = 0.02, K_i = 0.005,$$

$$\hat{\mathbf{w}} = 25 \text{ veh}, T_c = 2 \text{ min}$$

Case 2: User-optimal conditions may be achieved

only after the off-ramp queue spill-over

A. No route diversion

Route Diversion Policy TTS (veh·h) TD (veh·h)

A. No route diversion 3637 34.3

L3

Case 2: User-optimal conditions may be achieved

only after the off-ramp queue spill-over

B. Dynamic route diversion based on off-ramp queue length estimation

10 11

L2

2 km

L3

0.5 km

2000

34.3

A. No route diversion

queue length

B. Route diversion based on

3637 2927

5.9

(-20%)

(-83%)

PI-strategy parameters:

$$K_p = 0.02, K_i = 0.005,$$

$$\hat{\mathbf{w}} = 25 \text{ veh}, T_c = 2 \text{ min}$$

9

10 11

8 9

6

8

9 10 11

Case 2: User-optimal conditions may be achieved

only after the off-ramp queue spill-over

C. Dynamic route diversion through temporary off-ramp closures

Route Diversion Policy	TTS (veh·h)	TD (veh·h)
A. No route diversion	3637	34.3
B. Route diversion based on queue length	2927 (-20%)	5.9 (-83%)
C. Route diversion through temporary off-ramp closures	2916 (-20%)	8.3 (-76%)

L3

gh 2916 8.3 ures (-20%) (-76%)

Bang-Bang strategy:

 $\hat{\mathbf{w}} = 25 \text{ veh}, T_c = 2 \text{ min}$

Case 3: User-optimal conditions may not be achieved

A. No route diversion

Route Diversion Policy TTS (veh·h) TD (veh·h)

A. No route diversion 3979 0

L3

Case 3: User-optimal conditions may not be achieved

B. Dynamic route diversion through temporary off-ramp closures

6000 4000

2000

Route Diversion Policy	TTS (veh·h)	TD (veh·h)
A. No route diversion	3979	0
		44.5

B. Route diversion based on 3263 14.5 temporary off-ramp closures (-18%)

Bang-Bang strategy:

 $\hat{\mathbf{w}} = 25 \text{ veh}, T_c = 2 \text{ min}$

8 9

10 11

L2

6000

4000 2000

6

8

L3

9 10 11

Conclusions and remarks

- Various route diversion policies are proposed that aim to prevent recurrent freeway congestion which is triggered by a saturated off-ramp.
- The proposed policies employ simple but efficient feedback laws and attempt to reroute the drivers through alternative routes.
- The simulation results showed that, in all investigated cases, the proposed policies succeed in maintaining the off-ramp queue length within the off-ramp bounds.

Outline

Introduction

Calibration of Macroscopic Traffic Flow Models

Real-Time Traffic Control Measures : Case 1 – Route diversion control

Real-Time Traffic Control Measures : Case 2 – Merging traffic control

Conclusions and Future Work

Outline

Introduction

Calibration of Macroscopic Traffic Flow Models

Real-Time Traffic Control Measures: Case 1 - Route diversion control

Real-Time Traffic Control Measures : Case 2 – Merging traffic control

- Introduction
- Real-time merging traffic control concept
- Network description and traffic demand pattern
- Simulation investigations
- Conclusions and remarks

Introduction

- In the second examined case, recurrent freeway congestion is created due to congestion on the surface street network.
- The proposed control algorithm aims to maximize the surface street merge area outflow and prevent the off-ramp queue spill over.
- A real traffic network in Santiago, Chile, is utilized to demonstrate the application of the proposed control concept by use of microscopic simulation.

Consider the following network:

Consider the following network:

• The merge area is a potential bottleneck location, which may be activated during the peak hours.

Consider the following network:

- The merge area is a potential bottleneck location, which may be activated during the peak hours.
- The congestion on the surface street network may spill back into the freeway through the saturated offramp.

The merge area may be a bottleneck location due to a number of reasons:

- High arriving demand (including the surface street and the off-ramp demand).
- Infrastructure layout, e.g. lane drop.
- Strong weaving of traffic streams.
- Downstream urban traffic lights.
- Other capacity reducing events, such as incidents.

Fundamental diagram of a merge area:

Traffic control algorithm goals:

- Maximize the surface street merge area outflow.
- Prevent the off-ramp queue spill-over into the freeway mainstream.

ALINEA feedback control strategy:

$$q_{AL}(k) = q_{AL}(k-1) - K_P[N(k-1) - N(k-2)] + K_I[\hat{N} - N(k-1)]$$

$$q_{AL}(k) \in [q_{\min}, q_{\max}]$$

For maximum throughput $\hat{N} \approx N_{cr} \text{ (or } \hat{o} \approx o_{cr})$

Queue Override control strategy:

$$q_{QO}(k) = \begin{cases} q_{over}, & if \ o_{off}(k-1) > o_{th} \\ 0, & otherwise \end{cases}$$

Final flow decision:

• The final flow decision is implemented through two traffic lights placed at the surface street and the off-ramp upstream of the merge area.

Network description and traffic demand pattern

Autopista Central, Santiago, Chile:

- Congestion during the morning peak hours due to:
 - Limited capacity of the surface street merge area.
 - Strong lane changing maneuvers (weaving) in the merge area.
- This real freeway stretch is utilized to test and demonstrate the application of the proposed control algorithm.

Network description and traffic demand pattern

Microscopic simulation using AIMSUN:

- Freeway stretch: ~7km.
- Surface street network: ~1.52km.
- Detectors at several network locations.

Network description and traffic demand pattern

Microscopic simulation using AIMSUN:

- Average traffic demand similar to the real traffic demand.
- Two vehicle types: cars and trucks.

Simulation investigations No control case

Simulation investigations No control case

- 10 AIMSUN replications.
- Performance criteria:
 - Average Vehicles Delay (AVD)
 - Average Harmonic Speed (AHS)

	Network	Freeway- to- Freeway	Freeway- to- Surface	Surface- to- Surface
No Control	24.3	24.0	35.1	17.1

Simulation investigations No control case

Simulation investigations

Merging traffic control

- ALINEA strategy:
 - $T_c = 30 \text{ s}.$
 - Input: *N*.
 - $-K_P = 110 \text{ h}^{-1}, K_I = 80 \text{ h}^{-1}.$
 - $-q_{AL}(k) \in [600, 4800] \text{ veh.}$
 - $-\hat{N} \approx N_{cr}$.
- Queue Override strategy:
 - $-T_c = 30 \text{ s.}$
 - Input: o_{off}
 - $o_{th} \approx 25\%$, $q_{over} = 1600$ veh/h.

Nvalue investigations:

For $\hat{N} \in [20, 22]$ veh the AVD is minimized.

	Network	Freeway- to- Freeway	Freeway- to- Surface	Surface- to- Surface
No Control	24.3	24.0	35.1	17.1
Control Set-point = 22 veh	6.9	1.8	4.1	14.7
% Difference	-71.6	-92.5	-88.3	-14.0

$$\hat{N} = 22 \text{ veh}$$

Conclusions and remarks

- A control framework is proposed to address the problem of freeway congestion due to an over-spilling off-ramp.
- The control algorithm aims to maximize the surface street merge area outflow and at the same time to prevent the off-ramp queue spill-over into the mainstream freeway.
- The proposed control concept was demonstrated via microscopic simulation using a real traffic network.
- The simulation results showed that the proposed control algorithm improves the
 prevailing traffic conditions, preventing the formation of congestion and
 benefiting both the freeway drivers and the surface street users.

Outline

Introduction

Calibration of Macroscopic Traffic Flow Models

Real-Time Traffic Control Measures : Case 1 – Route diversion control

Real-Time Traffic Control Measures : Case 2 – Merging traffic control

Conclusions and Future Work

Outline

Introduction

Calibration of Macroscopic Traffic Flow Models

Real-Time Traffic Control Measures : Case 1 – Route diversion control

Real-Time Traffic Control Measures : Case 2 – Merging traffic control

Conclusions and Future Work

Conclusions and Future Work

To sum-up:

- The two most popular macroscopic traffic flow models (the CTM and METANET model) were validated and compared regarding the reproduction of traffic conditions at congested freeway off-ramp areas.
- The validation results showed that both models are able to reproduce the traffic conditions in such networks, with the METANET model offering a more accurate representation of the prevailing traffic conditions.
- Two different cases of congested freeway off-ramp areas were examined and innovative traffic control measures were proposed for each investigated case.
- The simulation results showed that in both cases the proposed traffic control strategies manage to prevent the off-ramp queue spill-over and the creation of mainstream congestion thus they are both very promising in case of potential field implementation.

Conclusions and Future Work

Future extensions:

- The utilized traffic flow models, and in particular the CTM model can be extended and improved to increase the achieved accuracy.
- More macroscopic traffic flow models can be employed and compared against the utilized models.
- The first examined traffic control case, for congested freeway off-ramp areas, can be extended in order to account for multiple routes.
- In the second traffic control case, a bigger surface street network can be considered taking also into account possible restrictions that may apply due to signalized junctions.
- Finally, field trial of the proposed traffic control strategies would provide more evidence about the achievable level of benefits.

Publications

International journals:

- **Spiliopoulou, A.,** Kontorinaki, M., Papageorgiou, M.,& Kopelias. P. (2014) Macroscopic traffic flow model validation at congested freeway off-ramp areas *Transportation Research Part C*, Vol. 41, pp. 18–29.
- Spiliopoulou, A., Kontorinaki, M., Papamichail, I., & Papageorgiou, M. (2015)
 Real-time route diversion control at congested freeway off-ramp areas.
 Transportation Research Part C (under review).
 Spiliopoulou, A., Papageorgiou, M. (2015)
 Real-time merging traffic control at congested freeway off-ramp areas (under preparation).

Conferences:

- **Spiliopoulou, A.,** Kontorinaki, M., Papageorgiou, M. & Kopelias, P. (2013) Συγκριτική αξιολόγηση μακροσκοπικών μοντέλων κυκλοφορίας σε περιοχές ραμπών εξόδου αυτοκινητοδρόμων (Comparative evaluation of macroscopic traffic flow models in freeway off-ramp areas) 6° Συνέδριο για την Έρευνα στις Μεταφορές στην Ελλάδα (6th Congress on Transportation Research in Greece), Thessaloniki, Greece, October 17–18.
- **Spiliopoulou, A.**, Kontorinaki, M., Papamichail, I., & Papageorgiou, M. (2013)
 Real-time route diversion control at congested off-ramp areas Part II: Route guidance versus off-ramp closure.
 EWGT2013 16th Meeting of the EURO Working Group on Transportation, Porto, Portugal, September 4-6.
- **Spiliopoulou, A.**, Kontorinaki, M., Papamichail, I., & Papageorgiou, M. (2013)
 Real-time route diversion control at congested motorway off-ramp areas Part I: User-optimum route guidance *Proc. of the 16th International IEEE Annual Conference on Intelligent Transportation Systems*, The Hague, The Netherlands, October 6–9.

This Ph.D. research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) — Research Funding Program: Heraclitus II. Investing in knowledge society through the European Social Fund.

Co-financed by Greece and the European Union

