14
Μαϊ

Παρουσίαση μεταπτυχιακής διατριβής κ.Αγγελόπουλου Δημητρίου, Σχολή ΜΠΔ
Κατηγορία: Παρουσίαση Μεταπτυχιακής Εργασίας   ΜΠΔ  
ΤοποθεσίαΒ1 - Αίθουσες Β, Β1.004
Ώρα14/05/2019 17:00 - 17:30

Περιγραφή:

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ

 

Ονοματεπώνυμο:   Αγγελόπουλος Δημήτριος

Αριθμός Μητρώου:              2014019040

 

Θέμα

Τίτλος στα Ελληνικά:            Πιστοποίηση αριθμητικού σχήματος διακριτοποίησης υψηλής τάξεως για την επίλυση των 3-Δ εξισώσεων Euler

Τίτλος στα Αγγλικά:            Validation of a High-Order Numerical Discretization Scheme for the Solution of the 3-D Euler Equations

 

Επιτροπή:

Επιβλέπων:     Ιωάννης Κ. Νικολός

Πρώτο Μέλος:             Ανάργυρος Ι. Δελής

Δεύτερο Μέλος:  Γεώργιος Αραμπατζής

 

Περίληψη της εργασίας στα Αγγλικά:          

In this study, the application and evaluation of a high-0rder spatial and time discretization method for the numerical solution of 2-dimensional Euler equations is reported. An alternative high-order approach [Yan14] enhances the in-house academic solver, named EU2, employing the dimensionless Euler equations, discretized with a node-centered finite volume method on triangular unstructured girds, to simulate inviscid compressible flows. Most methodologies that have been developed during the past years, e.g. the discontinuous Galerkin and K-exact scheme, necessitate a non-trivial increase of the DoFs (Degrees of Freedom) and consequently a considerable increase of computational resources. Moreover, major modifications to existing CFD codes are required for their implementation. The adopted high-order scheme is based on the incorporation of additional high order terms to the reconstructed nodal values, used for the computation of the inviscid fluxes. The required higher-order derivatives are computed with the corresponding lower-order ones on the existing DoFs via a successive differentiation technique. As a result, the connectivity requirements are restricted to the first neighbouring points, overcoming the inherent constraint of the unstructured solvers to retrieve information from a wider computational stencil. The aforementioned technique was incorporated with a variable extrapolation numerical scheme, named U-MUSCL, which closely resembles the traditional MUSCL one, and was coupled with a high-order time discretization that employs a Strong Stability Preserving Runge-Kutta method (SSPRK). To assess the effectiveness of the aforementioned numerical scheme, the EU2 solver is used against a benchmark problem having analytic solution. A satisfactory agreement is obtained, demonstrating the proposed scheme’s potential to increase the solution’s accuracy for a given grid density. Furthermore, a corresponding high-order formulation is extended to a 3-dimensional numerical fluid model. An elaborate construction method of 3-d computational meshes for various grid types is presented in detail for future exploitation on the numerical evaluation of equivalent 3-d high order schemes.

 

​​​​​​​Ημερομηνία Εξέτασης

Ημέρα/Μήνας/Έτος:             14/05/2019

Ώρα:                       17:00

 

​​​​​​​Χώρος Εξέτασης

Αίθουσα:               Β1004

Κτίριο:    ………………………………………

 

 

© Πολυτεχνείο Κρήτης 2012