19
Φεβ

Παρουσίαση Διπλωματικής Εργασίας κ. Κυπαρισσά Νικολάου - Σχολή ΗΜΜΥ
Κατηγορία: Παρουσίαση Διπλωματικής Εργασίας  
ΤοποθεσίαΛ - Κτίριο Επιστημών/ΗΜΜΥ, 145Π-42
Ώρα19/02/2020 13:00 - 14:00

Περιγραφή:

Θέμα
Πλαίσιο Ανάπτυξης για Πραγματικού Χρόνου Εκτέλεση Κυψελωτών Αυτομάτων σε Αναδιατασσόμενη Λογική
A Framework for the Real-Time Execution of Cellular Automata on Reconfigurable Logic

Εξεταστική Επιτροπή
Καθηγητής Δόλλας Απόστολος (επιβλέπων)
Καθηγητής Ζερβάκης Μιχαήλ
Καθηγητής Πνευματικάτος Διονύσιος (ΕΜΠ)

Περίληψη
Τα κυψελωτά αυτόματα είναι διακριτά μαθηματικά μοντέλα που ανακαλύφθηκαν τη δεκαετία του 1940 από τον John von Neumann και τον Stanislaw Ulam. Αποτελούν ένα γενικό υπόδειγμα υπολογισμών με εκτενή παραλληλισμό. Μέχρι σήμερα τα μαθηματικά αυτά εργαλεία έχουν χρησιμεύσει σε πληθώρα επιστημονικών τομέων. Σε αυτή τη διπλωματική εργασία παρουσιάζεται ένα παράλληλο πλαίσιο σε αναδιατασσόμενη λογική το οποίο μπορεί να χρησιμοποιηθεί για την αποδοτική εξομοίωση κυψελωτών αυτομάτων με μεγάλες γειτονιές σε πραγματικό χρόνο. Η εξομοίωση κυψελωτών αυτομάτων με μεγάλες γειτονιές σε μεγάλα πλέγματα προσδίδει νέες δυνατότητες μοντελοποίησης φυσικών διεργασιών με ρεαλιστικά αποτελέσματα. Όσον αφορά τις επιδόσεις, η παράλληλη αρχιτεκτονική ειδικού σκοπού που σχεδιάστηκε για την παρούσα εργασία ξεπερνά σε επιδόσεις έναν επεξεργαστή γενικού σκοπού, πετυχαίνοντας έως και 51 φορές πιο γρήγορη εκτέλεση από έναν επεξεργαστή Intel Core i7-7700HQ ο οποίος εκτελεί βελτιστοποιημένο λογισμικό γραμμένο σε γλώσσα προγραμματισμού C. 

Abstract
Cellular automata are discrete mathematical models discovered in the 1940s by John von Neumann and Stanislaw Ulam. They constitute a general paradigm for massively parallel computation. Through time, these powerful mathematical tools have been proven useful in a variety of scientific fields. In this thesis we propose a customizable parallel framework on reconfigurable logic which can be used to efficiently simulate weighted, large-neighborhood totalistic and outer-totalistic cellular automata in real time. Simulating cellular automata rules with large neighborhood sizes on large grids provides a new aspect of modeling physical processes with realistic features and results. In terms of performance results, our pipelined application-specific architecture successfully surpasses the computation and memory bounds found in a general-purpose CPU and has a measured speedup of up to 51x against an Intel Core i7-7700HQ CPU running highly optimized software programmed in C.

© Πολυτεχνείο Κρήτης 2012