Συντάχθηκε 01-07-2025 09:06
Τόπος:
Σύνδεσμος τηλεδιάσκεψης
Έναρξη: 08/07/2025 11:00
Λήξη: 08/07/2025 12:00
First Name/Surname. Christina Sartzetaki
Student Identification Number: 2022057580
Date: Tuesday, July 8th
Time: 11 a.m.
Room / Zoom Link:
https://tucgr.zoom.us/j/94282140867?pwd=Lwt99mIXQpajXFClwrVUimKUYKYLnI.1
Title: “Removal of Per- and polyfluoroalkyl substances (PFAS) from Aqueous Matrices by using Adsorption Processes”
Supervisor: Nikolaos Xekoukoulotakis
Three-member committee:
1. Nikolaos Xekoukoulotakis
2. Dimitrios Gournis
3. Nikolaos A. Diangelakis
Abstract:
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants that have been detected in various aqueous environments. Due to their chemical stability and health risks, effective removal technologies are urgently needed. Among emerging sorbents, β-cyclodextrin (β-CD) polymers have attracted interest for their tunable selectivity and environmental compatibility.
This thesis investigates the adsorption behavior of per- and polyfluoroalkyl substances (PFAS) onto β-cyclodextrin (β-CD)-based polymers, with a focus on how surface functionalization and polymer architecture influence removal efficiency. Five case studies and one meta-analysis were analyzed to explore key performance trends across different material chemistries, PFAS types, and water matrices. The results indicate that unmodified β-CD polymers show limited effectiveness, particularly for short-chain PFAS, while functionalized variants—especially those incorporating cationic groups—demonstrate high selectivity and fast kinetics even under complex environmental conditions. The study highlights the importance of electrostatic interactions, host–guest inclusion, and steric factors in driving adsorption performance. Finally, key challenges related to material scalability, integration into treatment systems, and regulatory pathways are discussed, outlining promising directions for future research and application.