Έμβλημα Πολυτεχνείου Κρήτης
Το Πολυτεχνείο Κρήτης στο Facebook  Το Πολυτεχνείο Κρήτης στο Instagram  Το Πολυτεχνείο Κρήτης στο Twitter  Το Πολυτεχνείο Κρήτης στο YouTube   Το Πολυτεχνείο Κρήτης στο Linkedin

Νέα / Ανακοινώσεις / Συζητήσεις

PhD Thesis Defense of Amirhossein Samii – School of ECE
Αναγνώσεις: 189 / Συνδρομές: 0

  • Συντάχθηκε 10-09-2025 10:38 Πληροφορίες σύνταξης

    Ενημερώθηκε: -

    Τόπος:
    Σύνδεσμος τηλεδιάσκεψης
    Έναρξη: 29/09/2025 12:00
    Λήξη: 29/09/2025 14:00

    TECHNICAL UNIVERSITY OF CRETE
    School of Electrical and Computer Engineering 
    Doctoral Program of Studies

    PhD Thesis Defense of Amirhossein Samii titled:

    Predictor-Based Cooperative Adaptive Cruise Control of Vehicular Platoons with Actuation and Communication Delays

    Doctoral Thesis Committee
    Associate Professor Nikolaos Bekiaris-Liberis, TUC, School of ECE (supervisor)
    Professor Eftychios Koutroulis, TUC, School of ECE
    Professor Thrasyvoulos Spyropoulos, TUC, School of ECE 
    Professor Michail Lagoudakis, TUC, School of ECE
    Professor Stefania Santini, University of Napoli Federico II
    Professor Themistoklis Charalambous, University of Cyprus
    Professor Meng Wang, Technische Universitat Dresden

    Abstract
    Traffic flow efficiency and safety can be significantly improved via Cooperative Adaptive Cruise Control (CACC) of vehicular platoons. One critical property in vehicle platooning is string stability, which is essential for ensuring both safety and efficiency. String stability serves as a key indicator of how efficiently disturbances are attenuated as they propagate upstream in a platoon. However, the benefits of string (and vehicle) stability may be compromised in the presense of delays in actuation, sensing, or communication.
    This research aims to develop predictor-based CACC designs to compensate the negative effects of long actuation and communication delays in vehicular platoons. The proposed control design framework is applied to heterogeneous vehicular platoons, where each vehicle’s dynamics are modeled by a third-order linear system with input delay. For each design we develop, we establish vehicle stability, string stability, and tracking of the desired speed/spacing. The proofs of individual vehicle stability, string stability, and regulation rely mainly on employment of an input-output approach on the frequency/time domains. We present consistent simulation results, including validations with real traffic data. We further provide experimental validation results, in a pair of vehicles, of one of our predictor-based CACC designs.

    Meeting ID: 920 0670 6930
    Password: 662698



© Πολυτεχνείο Κρήτης 2012